Sorensen
Asterion DC Series
RS232, USB, Ethernet and IEEE 488.2
Programming Manual
About AMETEK
AMETEK Programmable Power, Inc., a Division of AMETEK, Inc., is a global leader in the design and manufacture of precision, programmable power supplies for R&D, test and measurement, process control, power bus simulation and power conditioning applications across diverse industrial segments. From bench top supplies to rack-mounted industrial power subsystems, AMETEK Programmable Power is the proud manufacturer of Elgar, Sorensen, California Instruments and Power Ten brand power supplies.

AMETEK, Inc. is a leading global manufacturer of electronic instruments and electromechanical devices with annualized sales of $4 billion. The Company has over 15,000 colleagues working at more than 150 manufacturing facilities and more than 0 sales and service centers in the United States and around the world.

Trademarks
AMETEK is a registered trademark of AMETEK, Inc. Sorensen is a trademark owned by AMETEK, Inc. Other trademarks, registered trademarks, and product names are the property of their respective owners and are used herein for identification purposes only.

Notice of Copyright
Asterion DC Series Programming Manual RS232, Ethernet and IEEE 488.2 GPIB Programming manual © 2018 AMETEK Programmable Power, Inc. All rights reserved.

Exclusion for Documentation
UNLESS SPECIFICALLY AGREED TO IN WRITING, AMETEK PROGRAMMABLE POWER, INC. ("AMETEK"):  
(a) MAKES NO WARRANTY AS TO THE ACCURACY, SUFICIENTY OR SUITABILITY OF ANY TECHNICAL OR OTHER INFORMATION PROVIDED IN ITS MANUALS OR OTHER DOCUMENTATION.  
(b) ASSUMES NO RESPONSIBILITY OR LIABILITY FOR LOSSES, DAMAGES, COSTS OR EXPENSES, WHETHER SPECIAL, DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL, WHICH MIGHT ARISE OUT OF THE USE OF SUCH INFORMATION. THE USE OF ANY SUCH INFORMATION WILL BE ENTIRELY AT THE USER’S RISK, AND  
(c) REMINDS YOU THAT IF THIS MANUAL IS IN ANY LANGUAGE OTHER THAN ENGLISH, ALTHOUGH STEPS HAVE BEEN TAKEN TO MAINTAIN THE ACCURACY OF THE TRANSLATION, THE ACCURACY CANNOT BE GUARANTEED. APPROVED AMETEK CONTENT IS CONTAINED WITH THE ENGLISH LANGUAGE VERSION, WHICH IS POSTED AT WWW.PROGRAMMABLEPOWER.COM.

Date and Revision
January 19, A

Part Number
M330461-01

Contact Information
Telephone:  800 733 5427 (toll free in North America)  
858 450 0085 (direct)  
Fax:  858 458 0267  
Email: sales.ppd@ametek.com  
service.ppd@ametek.com  
Web:  www.programmablepower.com
This page intentionally left blank.
Important Safety Instructions

Before applying power to the system, verify that your product is configured properly for your application.

| WARNING | Hazardous voltages may be present when covers are removed. Qualified personnel must use extreme caution when servicing this equipment. Circuit boards, test points, and output voltages also may be floating above (below) chassis ground. |
| WARNING | The equipment used contains ESD sensitive parts. When installing equipment, follow ESD Safety Procedures. Electrostatic discharges might cause damage to the equipment. |

Only qualified personnel who deal with attendant hazards in power supplies, are allowed to perform installation and servicing.

Ensure that the AC power line ground is connected properly to the Power Rack input connector or chassis. Similarly, other power ground lines including those to application and maintenance equipment must be grounded properly for both personnel and equipment safety.

Always ensure that facility AC input power is de-energized prior to connecting or disconnecting any cable.

In normal operation, the operator does not have access to hazardous voltages within the chassis. However, depending on the user’s application configuration, **HIGH VOLTAGES HAZARDOUS TO HUMAN SAFETY** may be normally generated on the output terminals. The customer/user must ensure that the output power lines are labeled properly as to the safety hazards and that any inadvertent contact with hazardous voltages is eliminated.

Guard against risks of electrical shock during open cover checks by not touching any portion of the electrical circuits. Even when power is off, capacitors may retain an electrical charge. Use safety glasses during open cover checks to avoid personal injury by any sudden component failure.

Neither AMETEK Programmable Power Inc., San Diego, California, USA, nor any of the subsidiary sales organizations can accept any responsibility for personnel, material or inconsequential injury, loss or damage that results from improper use of the equipment and accessories.

**SAFETY SYMBOLS**

- **WARNING**
  - Risk of Electrical Shock

- **CAUTION**
  - Refer to Accompanying Documents

- **Supply Symbols**
  - Off (Supply)
  - Standby (Supply)
  - On (Supply)

- **Protection Symbols**
  - Protective Conductor Terminal
  - Fuse

- **Electrical Symbols**
  - Direct Current (DC)
  - Alternating Current (AC)
  - Three-Phase Alternating Current
  - Earth (Ground) Terminal
  - Chassis Ground
This page intentionally left blank.
**WARRANTY TERMS**

AMETEK Programmable Power, Inc. ("AMETEK"), provides this written warranty covering the Product stated above, and if the Buyer discovers and notifies AMETEK in writing of any defect in material or workmanship within the applicable warranty period stated above, then AMETEK may, at its option: repair or replace the Product; or issue a credit note for the defective Product; or provide the Buyer with replacement parts for the Product.

The Buyer will, at its expense, return the defective Product or parts thereof to AMETEK in accordance with the return procedure specified below. AMETEK will, at its expense, deliver the repaired or replaced Product or parts to the Buyer. Any warranty of AMETEK will not apply if the Buyer is in default under the Purchase Order Agreement or where the Product or any part thereof:

- is damaged by misuse, accident, negligence or failure to maintain the same as specified or required by AMETEK;
- is damaged by modifications, alterations or attachments thereto which are not authorized by AMETEK;
- is installed or operated contrary to the instructions of AMETEK;
- is opened, modified or disassembled in any way without AMETEK’s consent; or
- is used in combination with items, articles or materials not authorized by AMETEK.

The Buyer may not assert any claim that the Products are not in conformity with any warranty until the Buyer has made all payments to AMETEK provided for in the Purchase Order Agreement.

**PRODUCT RETURN PROCEDURE**

1. Request a Return Material Authorization (RMA) number from the repair facility (must be done in the country in which it was purchased):
   - **In the USA**, contact the AMETEK Repair Department prior to the return of the product to AMETEK for repair:
     - Telephone: 800-733-5427, ext. 2295 or ext. 2463 (toll free North America)
     - 858-450-0085, ext. 2295 or ext. 2463 (direct)
   - **Outside the United States**, contact the nearest Authorized Service Center (ASC). A full listing can be found either through your local distributor or our website, www.programmablepower.com, by clicking Support and going to the Service Centers tab.

2. When requesting an RMA, have the following information ready:
   - Model number
   - Serial number
   - Description of the problem

**NOTE:** Unauthorized returns will not be accepted and will be returned at the shipper’s expense.

**NOTE:** A returned product found upon inspection by AMETEK, to be in specification is subject to an evaluation fee and applicable freight charges.
This page intentionally left blank.
## CONTENTS

### 1 OVERVIEW .................................................................................................................. 1-1
  1.1 Introduction ................................................................................................................. 1-1
  1.2 RS232 Interface .......................................................................................................... 1-1
  1.3 USB Interface .............................................................................................................. 1-2
  1.4 Ethernet Interface ...................................................................................................... 1-2
  1.5 IEEE 488.2 GPIB Interface ......................................................................................... 1-2

### 2 FEATURES, FUNCTIONS AND SPECIFICATIONS ............................................... 2-1
  2.1 Introduction ................................................................................................................. 2-1
  2.2 Features of RS232 interface ....................................................................................... 2-1
  2.3 Features of USB interface .......................................................................................... 2-1
  2.4 Features of Ethernet interface .................................................................................. 2-2
  2.5 Features of IEEE 488.2 GPIB interface ...................................................................... 2-2
  2.6 Programmable Functions .......................................................................................... 2-2
  2.7 Readback Functions ................................................................................................... 2-3
  2.8 Specifications ............................................................................................................. 2-3
    2.8.1 Programming Resolution .................................................................................. 2-3
    2.8.2 Programming Accuracy ..................................................................................... 2-3
    2.8.3 Readback Resolution ......................................................................................... 2-4
    2.8.4 Readback Accuracy ........................................................................................... 2-4
  2.9 Minimum System Requirements ................................................................................ 2-4
    2.9.1 PC Connection .................................................................................................... 2-4
    2.9.2 Internet or LAN Connection ................................................................................ 2-4

### 3 REMOTE/LOCAL SELECTION .................................................................................. 3-1
  3.1 Introduction ................................................................................................................. 3-1
    3.1.1 Remote mode ....................................................................................................... 3-1
    3.1.2 Local Lock out Mode ......................................................................................... 3-2

### 4 RS232 CONFIGURATIONS AND REMOTE PROGRAMMING ...................... 4-1
  4.1 Rear Panel .................................................................................................................. 4-1
  4.2 Remote Programming Via RS232 ............................................................................. 4-1
    4.2.1 RS232 Connector Pinout .................................................................................... 4-1
    4.2.2 RS232 Setup Procedure ...................................................................................... 4-3

### 5 USB CONFIGURATIONS AND REMOTE PROGRAMMING .................... 5-1
  5.1 Rear Panel .................................................................................................................. 5-1
  5.2 USB SETUP PROCEDURE ......................................................................................... 5-2
    5.2.1 Port Number Identification ............................................................................... 5-2
    5.2.2 Communication test using serial interface program .......................................... 5-3
Asterion DC Series Programming

6 ETHERNET CONFIGURATION AND REMOTE PROGRAMMING 6-6
6.1 Introduction ............................................................................................................. 6-6
6.2 Ethernet/LAN Configuration .................................................................................. 6-6
  6.2.1 Ethernet Configuration Factory Defaults ......................................................... 6-7
6.3 Rear Panel ............................................................................................................. 6-7
6.4 Ethernet Setup Procedure ..................................................................................... 6-8
  6.4.1 Network Setup Using DHCP Server ................................................................. 6-8
  6.4.2 Network Setup Using Auto-IP (Direct Connection between Asterion power
       Supply and PC using Cross cable) ........................................................................ 6-10
  6.4.3 Network Setup using Static IP ........................................................................ 6-11
  6.4.4 Raw Socket Interface ..................................................................................... 6-12
  6.4.5 VXI-11 Protocol ............................................................................................. 6-12
  6.4.6 Web Server .................................................................................................... 6-13
6.5 Ethernet Web Pages, Overview ............................................................................ 6-13
  6.5.1 Home ............................................................................................................ 6-14
  6.5.2 IP Configuration ........................................................................................... 6-15
  6.5.3 Interactive Control ....................................................................................... 6-17
  6.5.4 LXI Identification ......................................................................................... 6-18

7 IEEE 488.2 GPIB CONFIGURATIONS AND REMOTE PROGRAMMING .............. 7-20
7.1 Rear Panel ............................................................................................................ 7-20
7.2 Remote Programming Via IEEE488.2 GPIB connector ........................................ 7-21
  7.2.1 Address Selection ....................................................................................... 7-21
  7.2.2 Power-On GPIB Service Request (PON SRQ) Selection ................................ 7-21
  7.2.3 Shield Ground ............................................................................................ 7-21
  7.2.4 IEEE 488.2 GPIB Setup Procedure .............................................................. 7-21

8 REMOTE ANALOG PROGRAMMING AND EXTERNAL USER CONTROL INTERFACE CONNECTOR ............................................................. 8-1
8.1 Introduction ......................................................................................................... 8-1
8.2 REMOTE Analog programming Connector details ................................................ 8-1
8.3 Remote ANALOG Programming ......................................................................... 8-10
  8.3.1 REMOTE PROGRAMMING BY RESISTANCE ........................................ 8-10
  8.3.2 Remote Programming BY VOLTAGE ....................................................... 8-13
  8.3.3 Remote Programming BY 4-20mA SOURCE .............................................. 8-15
  8.3.4 Remote Overvoltage Programming ............................................................... 8-17
8.4 Remote MONITOR OUTPUTS ............................................................................. 8-18
8.5 REMOTE DIGITAL INPUT AND OUTPUT ....................................................... 8-18
  8.5.1 Auxiliary power output .............................................................................. 8-18
  8.5.2 Digital outputs .......................................................................................... 8-19
  8.5.3 Digital Inputs .............................................................................................. 8-21
  8.5.4 Fault ........................................................................................................... 8-21
8.5.5 Trigger-In & Trigger Out ................................................................. 8-24
8.6 Remote Output On/Off Control ......................................................... 8-24
  8.6.1 Remote Output ON/OFF by Contact Closure ......................... 8-24
  8.6.2 Remote Output ON/OFF Control by External Source .......... 8-25

9 RS232/ETHERNET/ IEEE 488.2 GPIB AND SCPI COMMAND OPERATION ................................................. 9-1
  9.1 Introduction .................................................................................. 9-1
  9.2 Register Definitions ................................................................. 9-1
    9.2.1 Protection Condition and Protection Event Status Register ... 9-1
    9.2.2 Standard Event Status Register (ESR) .............................. 9-4
    9.2.3 SCPI Status Byte ................................................................. 9-5
    9.2.4 Error/Event Queue ............................................................... 9-7
    9.2.5 Serial Poll Operation ............................................................ 9-8
  9.3 SCPI Conformance Information .................................................... 9-9
    9.3.1 Parameter Definitions .......................................................... 9-9
    9.3.2 Conventions ....................................................................... 9-9
    9.3.3 Queries ............................................................................ 9-10
  9.4 IEEE 488.2 Common Command Subsystem .................................. 9-10
  9.5 SOURCE SCPI Command Subsystem ........................................... 9-12
    9.5.1 SOURCE SCPI Command Summary .................................. 9-12
    9.5.2 SOURCE SCPI Command Reference .................................. 9-15
    9.5.3 RAMP FUNCTION ............................................................... 9-20
  9.6 MEASURE SCPI Command Subsystem ........................................ 9-21
    9.6.1 MEASURE SCPI Command Summary ............................... 9-21
    9.6.2 MEASURE SCPI Command Reference ................................ 9-21
  9.7 OUTPUT SCPI Command Subsystem ............................................ 9-22
    9.7.1 OUTPUT SCPI Command Summary .................................... 9-22
    9.7.2 OUTPUT SCPI Command Reference .................................... 9-23
  9.8 SYSTEM SCPI Command Subsystem ........................................... 9-24
    9.8.1 SYSTEM SCPI Command Summary .................................... 9-24
    9.8.2 SYSTEM SCPI Command Reference .................................... 9-25
  9.9 HTRIGGER SCPI Command Subsystem ........................................ 9-27
    9.9.1 HTRIGGER SCPI Command Summary ............................... 9-27
    9.9.2 HTRIGGER SCPI Command Reference ............................... 9-27
  9.10 TRIGGER SCPI Command Subsystem .......................................... 9-27
    9.10.1 TRIGGER SCPI Command Summary ................................. 9-27
    9.10.2 TRIGGER SCPI Command Reference ................................. 9-27
  9.11 CALIBRATION SCPI Command Subsystem ................................ 9-28
    9.11.1 CALIBRATION SCPI Command Summary .......................... 9-28
    9.11.2 CALIBRATION SCPI Command Reference .......................... 9-31
  9.13 STATUS SCPI Command Subsystem ........................................... 9-38
    9.13.1 STATUS SCPI Command Summary ..................................... 9-38
9.13.2 STATUS SCPI Command Reference ......................................................... 9-38
9.14 Examples of Using the SCPI Commands .......................................................... 9-38
  9.14.1 VI Mode Example .................................................................................. 9-38
  9.14.2 OVP Setup Example ........................................................................... 9-39
  9.14.3 Trigger Example .................................................................................. 9-40
  9.14.4 Ramp I Example .................................................................................. 9-40
  9.14.5 Ramp V Example 2 ............................................................................ 9-41
  9.14.6 Power On INIT Example ...................................................................... 9-41

10 CALIBRATION .......................................................................................................... 10-42
  10.1 Introduction .................................................................................................. 10-42
  10.2 Setup for Calibration .................................................................................... 10-43
  10.3 Voltage Programming Calibration ................................................................. 10-43
  10.4 Voltage Programming Calibration – REMOTE SENSE .................................. 10-46
  10.5 Current Programming Calibration ................................................................. 10-48
  10.6 Analog Program Adjustment ........................................................................ 10-50
    10.6.1 Voltage programming – 10V range voltage source calibration .............. 10-51
    10.6.2 Voltage programming – 5V range voltage source calibration .............. 10-51
    10.6.3 Voltage programming – current source (Resistance Programming) calibration ........................................................................................................ 10-52
    10.6.4 Voltage programming – 4-20mA source calibration .................................. 10-53
    10.6.5 Current programming – 10V range voltage source calibration .............. 10-53
    10.6.6 CURRent programming – 5V range voltage source calibration .............. 10-54
    10.6.7 Current programming – current source (Resistance Programming) calibration ........................................................................................................ 10-55
    10.6.8 CURRENT programming – 4-20mA source calibration ............................. 10-55
    10.6.9 Power programming – 10V range voltage source calibration .............. 10-56
    10.6.10 POWER programming – 5V range voltage source calibration .............. 10-57
    10.6.11 POWER programming – current source (Resistance Programming) calibration ........................................................................................................ 10-57
    10.6.12 POWER programming – 4-20mA source calibration ............................. 10-58
    10.6.13 OVER-Voltage programming – 10V range calibration .......................... 10-59
    10.6.14 OVER-Voltage programming – 5V range calibration ................................ 10-59

11 SCPI STATUS IMPLEMENTATION ....................................................................... 11-63
  11.1 SCPI Status Byte Implementation .................................................................. 11-63
LIST OF TABLES

Table 4–1. RS-232C Interface Connector Type............................................................4-2
Table 4–2. RS-232C Interface Connector Pinout ..........................................................4-2
Table 4–3. RS-232C Interface Connector Pinout ..........................................................4-3
Table 8–1. Analog Programming Connector, Designations and Functions ..............8-9
Table 8–2. List of Faults in DC-Asterion Power Supply ..............................................8-24
Table 9–1. Protection Condition and Event Status Registers ...................................9-3
Table 9–2. Standard Event Status Register .................................................................9-4
Table 9–3. SCPI Status Byte .......................................................................................9-6
Table 9–4 SCPI Error Codes.......................................................................................9-7
LIST OF FIGURES

Figure 3-1. Local/Remote Screen ................................................................................ 3-1
Figure 3-2. Dashboard Screen ..................................................................................... 3-1
Figure 3-3. Local Lockout Screen ............................................................................... 3-2
Figure 3-4. Home-Screen ......................................................................................... 3-2
Figure 4-1. Rear Panel – RS232 Interface .................................................................. 4-1
Figure 4-2. RS-232C Interface Connector ................................................................. 4-2
Figure 4-3. RS232 Communications Cable Pinout ...................................................... 4-4
Figure 4-4. RS232 Screen (Configure) ....................................................................... 4-4
Figure 4-5. Port Setting in Tera Term ....................................................................... 4-5
Figure 4-6. Baud rate Setting in Tera Term ............................................................... 4-5
Figure 4-7. Terminal option in Tera Term .................................................................. 4-6
Figure 4-8. Terminal Setup in Tera Term .................................................................. 4-6
Figure 6-1. Rear Panel - Ethernet Interface ............................................................... 6-7
Figure 6-2. LAN Screen (Configure) ........................................................................ 6-8
Figure 6-3. LAN Screen ......................................................................................... 6-8
Figure 6-4. LAN Screen (Settings) ........................................................................ 6-9
Figure 6-5. RS232 Screen (Settings) ....................................................................... 6-10
Figure 6-6. LAN configure (Settings) ..................................................................... 6-11
Figure 6-7. LAN Screen (Configure Static IP) ......................................................... 6-11
Figure 6-8. Asterion DC power Supply Banner and Tab ........................................... 6-13
Figure 6-9. Login Window ..................................................................................... 6-13
Figure 6-10. Asterion DC power Supply Home Page .............................................. 6-14
Figure 6-11. Asterion DC Power supply Device identify ........................................ 6-15
Figure 6-12. Asterion DC power supply IP Configuration Page ............................. 6-15
Figure 6-13. Interactive Control Page ..................................................................... 6-17
Figure 6-14. LXI Identification Page ...................................................................... 6-18
Figure 7-1. Rear Panel – IEEE 488.2 GPIB Interface ............................................. 7-20
Figure 7-2. GPIB Screen ........................................................................................ 7-21
Figure 8-1. Rear Panel - Analog Programming Connector ...................................... 8-1
Figure 8-2 Remote Analog Programming and External User Control Interface Connector Pin-Out ............................................................... 8-2
Figure 8-3 Remote Current Programming Using Resistance .................................. 8-11
Figure 8-4 Remote Voltage Programming Using Resistance .................................. 8-12
Figure 8-5 Remote Power Programming Using Resistance .................................. 8-12
Figure 8-6 Remote Current Programming Using 0-5 VDC or 0-10 VDC Source ... 8-13
Figure 8-7 Remote Voltage Programming Using 0-10 VDC Source .................... 8-14
Figure 8-8 Remote Power Programming Using 0-10 VDC Source ....................... 8-15
Figure 8-9 Remote Current Programming Using 4-20mA Source .................................8-16
Figure 8-10 Remote Voltage Programming Using 4-20mA Source ..............................8-16
Figure 8-11 Remote Power Programming Using 4-20mA Source ..................................8-17
Figure 8-12 Remote Overvoltage Programming Using DC Voltage Source .................8-18
Figure 8-13 External Isolation and Polarity Relay interface to Control interface ..........8-20
Figure 8-14 Remote Output On/Off Control by Contact Closure ..................................8-24
Figure 8-15 Remote Output On/Off Using Isolated AC or DC Source .........................8-25
Figure 8-16 Remote Output On/Off Using Isolated TTL/CMOS Source .......................8-25
Figure 9-1. Protection Condition and Protection Event Register .................................9-4
Figure 9-2. Standard Event Status and Standard Event Status Enable Register .........9-5
Figure 9-3. SCPI Status Byte and Service Request Enable Register .........................9-7
Figure 11-1. SCPI Status Implementation Diagram ..................................................11-64
This page intentionally left blank.
1 OVERVIEW

1.1 INTRODUCTION

This manual provides instructions for remote programming control and monitoring for Asterion DC power Supplies. For easy navigation to the applicable instructions, this manual separates RS232, USB, IEEE 488.2 GPIB and Ethernet setup instructions. The instructions then converge where they are common to all three interface options. See Section 1.2, Section 1.3, Section 1.4 and Section 1.5 for orientation. The Asterion DC power supply series provides default interface of RS232, USB and Ethernet. IEEE 488.2 GPIB is an optional interface. Use this programming manual in conjunction with your Asterion DC power supply operational manual.

1.2 RS232 INTERFACE

If you are using the RS232 interface, go to:

- 2 for Features, Functions and Specifications
- 3 for Remote/Local Selection
- 4 for RS232 Configuration and Remote Programming
- 7 for Remote Analog Programming and External user control interface
- 9 for SCPI Commands and Definitions
- 10 for Calibration Procedures
- 11 for SCPI Status Implementation
1.3 **USB INTERFACE**

If you are using the USB interface, go to:

- 2 for Features, Functions and Specifications
- 3 for Remote/Local Selection
- 5 for USB Configuration and Remote Programming
- 7 for Remote Analog Programming and External user control interface
- 9 for SCPI Commands and Definitions
- 10 for Calibration Procedures
- 11 for SCPI Status Implementation

1.4 **ETHERNET INTERFACE**

If you are using an Ethernet interface, go to:

- 2 for Features, Functions and Specifications
- 3 for Remote/Local Selection
- 6 for Ethernet Configuration and Remote Programming
- 7 for Remote Analog Programming and External user control interface
- 9 for SCPI Commands and Definitions
- 10 for Calibration Procedures
- 11 for SCPI Status Implementation

1.5 **IEEE 488.2 GPIB INTERFACE**

If you are using the IEEE 488.2 GPIB interface, go to:

- 2 for Features, Functions and Specifications
- 3 for Remote/Local Selection
- 5 for IEEE 488.2 GPIB Configuration and Remote Programming
- 7 for Remote Analog Programming and External user control interface
- 9 for SCPI Commands and Definitions
- 10 for Calibration Procedures
- 11 for SCPI Status Implementation
2
FEATURES, FUNCTIONS
AND SPECIFICATIONS

2.1 INTRODUCTION
This section introduces the features, functions and specifications for RS232, USB, Ethernet and IEEE 488.2 GPIB. Programmable, readback functions and specifications are applicable to all the communication interfaces.

2.2 FEATURES OF RS232 INTERFACE
- Programming and readback of voltage and current
- Programmable overvoltage protection with reset
- SCPI compliant command set
- User selectable Constant-Voltage(CV), Constant-Current(CC), Constant Power (CP) or Foldback mode(CV/CC/CP), with reset
- Voltage Ramp and Current Ramp functions
- Soft calibration
- Rear panel RS232 control interface
- Rear panel Remote Analog Programming and External user control interface (Common to all interfaces)

2.3 FEATURES OF USB INTERFACE
- Programming and readback of voltage and current
- Programmable overvoltage protection with reset
- SCPI compliant command set
- User selectable Constant-Voltage(CV), Constant-Current(CC), Constant Power (CP) or Foldback mode(CV/CC/CP), with reset
- Voltage Ramp and Current Ramp functions
- Soft calibration
- Rear panel USB control interface
• Rear panel Remote Analog Programming and External user control interface
  (Common to all interfaces)

### 2.4 FEATURES OF ETHERNET INTERFACE

- Ethernet/LAN connectivity, 10/100base-T compatible
- Fully ™ (LAN eXtensions for Instrumentation) class C compliant
- Built-in Web Server for direct control using Web Browser
- Programming and readback of voltage and current
- Programmable overvoltage protection with reset
- SCPI compliant command set
- User selectable Constant-Voltage(CV), Constant-Current(CC), Constant Power (CP) or Foldback mode(CV/CC/CP), with reset
- Voltage Ramp and Current Ramp functions
- Field-upgradable firmware via Ethernet
- Full calibration through software control
- Rear panel Ethernet control interface
- Rear panel Remote Analog Programming and External user control interface
  (Common to all interfaces)

### 2.5 FEATURES OF IEEE 488.2 GPIB INTERFACE

- Programming and readback of voltage and current
- Programmable overvoltage protection with reset
- IEEE 488.2 and SCPI compliant command set
- User selectable Constant-Voltage(CV), Constant-Current(CC), Constant Power (CP) or Foldback mode(CV/CC/CP), with reset
- Voltage Ramp and Current Ramp functions
- Soft calibration
- Rear panel GPIB IEEE 488.2 control interface
- Rear panel Remote Analog Programming and External user control interface
  (Common to all interfaces)

### 2.6 PROGRAMMABLE FUNCTIONS

The below functions are common to all communication interfaces (RS232, USB, IEEE 488.2 GPIB and Ethernet).

- Output voltage and current
- User limits for voltage and current
- Overvoltage protection
- Output enable/disable
• Maskable fault interrupt
• Hold and trigger
• External relay control.
• Full calibration

2.7 READBACK FUNCTIONS

The below functions are common to all communication interfaces (RS232, IEEE 488.2 GPIB and Ethernet).

• Actual measured voltage and current
• Voltage and current settings
• User voltage and current limits
• Overvoltage protection setting
• Status and Accumulated Status registers
• Programming error codes
• Fault codes
• Manufacturer, power supply model, and firmware version identification

2.8 SPECIFICATIONS

Specifications are subject to change without notice. Refer to your Asterion DC power supply operation manual for effects of line regulation, load regulation, and temperature on accuracy specifications. Specifications are common to all interfaces (RS232, IEEE 488.2 GPIB and Ethernet).

2.8.1 Programming Resolution

Voltage: 0.012% of full scale
Current: 0.012% of full scale
Overvoltage Protection: 0.1% of full scale (full scale is 110% of max output voltage.)
Power Output: 0.012% of full scale

2.8.2 Programming Accuracy

Voltage: ± (0.1% of maximum output voltage)
Current: ± (0.2% of maximum output current) *
Overvoltage Protection: ± (1.0% of max output voltage)
Power Output: ± (0.3% of rated output power)

* After 30 minutes operation with fixed line, load, and temperature.
2.8.3 **Readback Resolution**
- Voltage: ± 0.012% of full scale
- Current: ± 0.012% of full scale
- Power: ± 0.012% of full scale

2.8.4 **Readback Accuracy**
- Voltage: ± (0.1% of full scale output voltage)
- Current: ± (0.2% of full scale output current) *
- Power: ± (0.3% of rated output power)

* After 30 minutes operation with fixed line, load, and temperature.

2.9 **MINIMUM SYSTEM REQUIREMENTS**
The minimum software and equipment requirements to operate your Asterion DC power supply depend on whether it is connected directly to your PC or connected to the Internet or to a Local Area Network (LAN).

2.9.1 **PC Connection**
To operate your Asterion DC power supply with Ethernet option connected directly to a PC (no Internet or LAN connection), you will need:

- Pentium-based laptop or desktop computer running Microsoft Windows 7 (or better)
- Ethernet based Network Interface Card (NIC) or built-in port capable of 10/100 MBit operation
- CAT 5 cable Ethernet crossover cable
- Web Browser

2.9.2 **Internet or LAN Connection**
To operate your Asterion DC power supply connected to the Internet or a LAN you will need:

- Pentium-based laptop or desktop computer running Microsoft Windows 7 (or better)
- Ethernet based Network Interface Card (NIC) or built-in port capable of 10/100 MBit operation
- Appropriate Ethernet modem for Internet connection, or
- Switch or hub (Linksys brand strongly recommended) for LAN connection
- Standard CAT 5 Ethernet interconnect cable
- Web Browser
3

REMOTE/LOCAL SELECTION

3.1 INTRODUCTION
This section describes the various mode of operations available in the front panel.

3.1.1 Remote mode:
- Unit can be set to Remote mode by Sending the command `SYST:LOCAL 0` using any of the interface available on the unit (RS232, USB, LAN, GPIB).
- Note: Unit can also be set to remote by sending any SCPI command using any of the interface available on the unit. (Refer to Figure 3-1)

![Figure 3-1. Local/Remote Screen](image)

- Upon pressing the Go To Local button Asterion DC power supply front panel screen will navigate to Dash board. (Refer to Figure 3-2)

![Figure 3-2. Dashboard Screen](image)
3.1.2 **Local Lock out Mode:**

- Using the interface available on the unit (RS232, USB, LAN, GPIB), Sending the command **SYST:LOCAL:LOCK** will change the unit to Local Lock out mode.

![Figure 3-3. Local Lockout Screen](image1)

- During this mode, All the front panel options and hardware buttons will be disabled.
- To enable the device into local mode, use the special command **SYST:LOCAL:UNLOCK “6867”**, unit mode will be changed to local mode. Refer to Figure 3-4

![Figure 3-4. Home-Screen](image2)
RS232 CONFIGURATIONS AND REMOTE PROGRAMMING

4.1 REAR PANEL

This section provides illustration of the Asterion DC power supply’s rear panel layout, which differs among the Asterion DC power supply’s models. For example, refer to Figure 4-1. Regardless of the layout, the component functions are common across all models and those that are pertinent to the RS232 options are described here.

1- RS232C 9-contact receptacle (female) Subminiature-D
2- Remote Analog Programming and External User Control Interface connector

*Figure 4-1. Rear Panel – RS232 Interface*

4.2 REMOTE PROGRAMMING VIA RS232

4.2.1 RS232 Connector Pinout

The RS232 interface operates at a default baud of 9600. The baud is selectable from 9600 to 115200.

The RS232 interface is accessible through the rear panel DB9 connector (Refer to Figure 4-2), labeled Serial on the power supply’s rear panel (see Figure 4-1)
**Figure 4-2. RS-232C Interface Connector**

<table>
<thead>
<tr>
<th>Connector</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232C Interface</td>
<td>9-contact receptacle (female) Subminiature-D.</td>
</tr>
</tbody>
</table>

**Table 4–1. RS-232C Interface Connector Type**

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>DCE Signal</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/C</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>TxD</td>
<td>Transmit Data</td>
<td>Output</td>
</tr>
<tr>
<td>3</td>
<td>RxD</td>
<td>Receive Data</td>
<td>Input</td>
</tr>
<tr>
<td>4</td>
<td>N/C</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Common</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>N/C</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>Request to Send</td>
<td>Input</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Clear to Send</td>
<td>Output</td>
</tr>
<tr>
<td>9</td>
<td>N/C</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

**Table 4–2. RS-232C Interface Connector Pinout**
4.2.2 RS232 Setup Procedure

This section provides a quick reference for the configuration requirements for RS232.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td>Selectable from 9600 to 115200</td>
<td>The baud rate is selectable through the front panel</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
<td>Not Selectable</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
<td>Not Selectable</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
<td>Not Selectable</td>
</tr>
<tr>
<td>Incoming Termination Character</td>
<td>• CR (Carriage Return): HEX, 0x0d (DEC, 13),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LF (Line Feed): HEX, 0x0a (DEC, 10),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CR LF (Carriage Return and Line Feed): HEX, 0x0d 0x0a (DEC, 13 10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LF CR (Line Feed and Carriage Return): HEX, 0x0a 0x0d (DEC, 10 13)</td>
<td></td>
</tr>
<tr>
<td>Outgoing Termination Character(s)</td>
<td>CR LF (Carriage Return and Line Feed): HEX, 0x0d 0x0a (DEC, 13 10)</td>
<td></td>
</tr>
</tbody>
</table>

1. Build an RS232 communications cable as per the pinout description illustrated in Figure 4-3 (with crossover of signals Rx/Tx and CTS/RTS):

<table>
<thead>
<tr>
<th>D-Subminiature 9-Pin Connector Male Connector (Power supply Interface)</th>
<th>D-Subminiature 9-Pin Connector Female Socket (PC interface)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(RxD)</td>
<td>3(TxD)</td>
</tr>
<tr>
<td>3(TxD)</td>
<td>2(RxD)</td>
</tr>
<tr>
<td>No Connection</td>
<td>No Connection</td>
</tr>
<tr>
<td>5(GND)</td>
<td>5(GND)</td>
</tr>
<tr>
<td>7(RTS)</td>
<td>8(CTS)</td>
</tr>
<tr>
<td>8(CTS)</td>
<td>7(RTS)</td>
</tr>
</tbody>
</table>

*Table 4–3. RS-232C Interface Connector Pinout*
2. Connect power to the unit and turn on the unit.

3. The baud rate is selectable through the front panel, see Figure 4-4. Change the baud rate for RS232 to 9600.

   To navigate to RS232, configure screen, go to Home → Control Interface → RS232 → RS232 Configure.

4. Upon tapping the text box, following baud rates selection screen will appear.

   Figure 4-3. RS232 Communications Cable Pinout

   Figure 4-4. RS232 Screen (Configure)
5. Use one of the available programs for serial communication, such as Tera Term.

   If you choose to use Tera Term:

6. Select serial option in the Tera term window and select the port as COM1 and press OK. (Refer to Figure 4-5)

   ![Figure 4-5. Port Setting in Tera Term](image)

7. Select setup and select serial port in the setup window.

8. Set the baud rate to 9600, 8 data bits, no parity, 1 stop bit, and no flow control. (Refer to Figure 4-6)

   ![Figure 4-6. Baud rate Setting in Tera Term](image)
9. Select the Terminal from the Tera Term. (Refer to Figure 4-7)

![Figure 4-7. Terminal option in Tera Term](image)

10. Change the settings as per the below screen shot. (Refer to Figure 4-8)

![Figure 4-8. Terminal Setup in Tera Term](image)

11. Test the communication interface by issuing the *IDN? Command. This returns the supply’s model and serial numbers, and software version(s). This command does not affect the output of the supply.
This page intentionally left blank.
5 USB CONFIGURATIONS AND REMOTE PROGRAMMING

5.1 REAR PANEL

This section provides illustration of the Asterion DC power supply’s rear panel layout, which differs among the Asterion DC models. For example, (Refer to Figure 5-1). Regardless of the layout, the component functions are common across all models and those that are pertinent to the USB options are described here.

![Figure 5-1 Rear Panel – Type-B USB Interface](image)

1-Type-B USB Connector
2- Remote Analog Programming and External User Control Interface connector
5.2 USB SETUP PROCEDURE

5.2.1 Port Number Identification

Port Number of the Asterion DC power supply can be identified in the device manager by following the steps below:

1. Navigate to device manager in the windows system.
2. Go to Ports and check for the new COM port available in the list.(Refer to Figure 5-2)
3. Note: If Multiple COM ports are shown, disconnect all the COM ports and connect only the Asterion DC power supply and check for the new COM port.

![Device Manager]

*Figure 5-2 Port identification*
5.2.2 Communication test using serial interface program

1. Use one of the available programs for serial communication, such as Tera Term.

   If you choose to use Tera Term:

2. Select serial option in the Tera Term window and select the port identified in the device manager and press OK. (Refer to Figure 5-3)

![Figure 5-3 Port identification in Tera Term](image)

3. Select setup and select serial port in the setup window.

4. Set the baud rate to 115200, 8 data bits, no parity, 1 stop bit, and none flow control.

![Figure 5-4 Baud rate selection in Tera Term](image)
5. Select the Terminal from the Tera Term. (Refer to Figure 5-5)

![Figure 5-5 Terminal selection in Tera Term](image)

6. Change the settings. (Refer to Figure 5-6)

![Figure 5-6 Terminal setup in Tera Term](image)

7. Test the communication interface by issuing the *IDN? Command. This returns the supply’s model and serial numbers, and software version(s). This command does not affect the output of the supply.
6

ETHERNET CONFIGURATION
AND REMOTE PROGRAMMING

6.1 INTRODUCTION

This section covers the Remote Programming Ethernet Interface for the Asterion DC power supply. This configuration enables you to operate Asterion DC power supply from a computer via Ethernet IEEE-802.3 communication protocol, with SCPI-compatible language, allowing full remote programming control and monitoring of your power supply.

An important point is that this Ethernet option is ™ (1.5 ™ device specification 2016) class C compliant. ™ is an instrumentation platform based on industry-standard Ethernet technology designed to provide ease of integration by modularity, flexibility and performance.

6.2 ETHERNET/LAN CONFIGURATION

- Ethernet Standard: IEEE-802.3 compliant
- Technology: 10/100Base-T
- Protocol: TCP/IP, IPV4
- ICMP (ping server): Always Enabled
- mDNS/DNS-SD: Always Enabled
- IP Address Assignment: Via DHCP or Static IP
- VXI-11 Discovery: Supported
6.2.1 Ethernet Configuration Factory Defaults

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Name</td>
<td>AST&lt;base model&gt;-&lt;last four digits of serial number&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>AST Power Supply &lt;base model&gt;</td>
</tr>
<tr>
<td>IP Address</td>
<td>* DHCP-acquired, If DHCP server absent, assigned via Auto-IP</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>* DHCP-acquired, If DHCP server absent, assigned via Auto-IP</td>
</tr>
<tr>
<td>Gateway</td>
<td>* DHCP-acquired, If DHCP server absent, assigned via Auto-IP</td>
</tr>
<tr>
<td>DNS Server</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>Listening Port</td>
<td>52000</td>
</tr>
<tr>
<td>User ID</td>
<td>admin</td>
</tr>
<tr>
<td>Password</td>
<td>password</td>
</tr>
</tbody>
</table>

* The Ethernet interface provides the opportunity to assign an IP address via Auto-IP. If DHCP server fails to assign an IP address and Auto-IP setting is ON, the unit gets an IP address in the range of 169.254.X.X.

6.3 REAR PANEL

This section provides illustrations of the Asterion DC power supplies rear panel layout, which differs among the Asterion models. For example, refer to Figure 6-1. Rear Panel - Ethernet Interface. Regardless of the layout, the component functions are common across all models and those that are pertinent to the Ethernet option are described here.

![Figure 6-1. Rear Panel - Ethernet Interface](image)

1-RJ45-Ethernet connector
2- Remote Analog Programming and External User Control Interface Connector
6.4 **ETHERNET SETUP PROCEDURE**

There are three ways to setup the Ethernet network in the Asterion series power supply.

- Network setup using DHCP Server
- Network Setup using Auto-IP (Direct Connection between Asterion power supply and PC using Cross cable)
- Network Setup using Static IP

The network setups are described in the subsections that follow. Use the Setup procedure that applies to your system and application to configure the Ethernet.

**NOTE:** When connecting your Asterion DC power supply to a network, it is strongly recommended to use Linksys® hubs or switches, which have undergone extensive compatibility testing with the Ethernet interface.

6.4.1 **Network Setup Using DHCP Server**

For this network setup to work, DHCP mode must be enabled. DHCP mode can be enabled using the front panel or the serial interface.

6.4.1.1 **DHCP MODE SELECTION USING FRONT PANEL**

Navigate to Home → Control Interface → LAN → LAN Configure. Make both DHCP and Auto-IP as ON to use the DHCP mode of operation, See Figure 6-2.

![Figure 6-2. LAN Screen (Configure)](image)

**NOTE:** If DHCP server is not available and Auto-IP is enabled, the unit can assign itself an IP address in the Auto-IP (dynamic link local addressing) range.

**NOTE:** In DHCP mode of operation, if Auto-IP is Off and DHCP server is not available, the IP address will default to 0.0.0.0. See Figure 6-3. This configuration is not usable for network connection.

![Figure 6-3. LAN Screen](image)
6.4.1.2 DHCP MODE SELECTION USING SERIAL INTERFACE

1. Connect using a computer serial communications program such as Tera Term and establish communication as described in section 4.2.2.
2. Turn ON DHCP mode using the SCPI command, SYST:NET:DHCPMODE 1.
3. Turn ON AUTO-IP mode using the SCPI command, SYST:NET:AUTOIP 1.
4. Type SYST:NET:APPLY <enter> to apply the Network settings.
5. After configuring the settings, verify with the queries, SYST:NET:DHCPMODE? and SYST:NET:AUTOIP?.

6.4.1.3 IP ADDRESS IDENTIFICATION FOR DHCP MODE OF OPERATION

1. Start with the power supply in the power-off state.
2. Connect a RJ-45 network cable from the power supply to the network with the DHCP server.
3. Power on the power supply and allow the power supply to perform its initialization.
4. Identify the IP address assigned to the power supply by accessing the DHCP server, by any of four ways:
   a. Asking your network administrator.
   b. Discovering it with a VXI-11 compliant discover program.
      **NOTE:** The power supply is VXI-11 compliant, so even without access to the DHCP server, it is still possible to discover the IP address assigned to the power supply with programs such as National Instrument’s NI-VISA.
   c. Using front panel and navigating to Home → Control Interface → LAN → LAN Settings. Refer to Figure 6-4. LAN Screen (Settings).
   d. Using a computer serial communications program such as Tera Term, set for the same baud as Asterion DC power supply (Refer to Figure 6-5) no parity, 8 data bits, 1 stop bit. Use SCPI command SYST:NET:IP? <Enter> to get the IP address.
      To find RS232 Settings of the power supply, navigate to Home → Control Interface → RS232 → RS232 Settings.
5. The Asterion power supply hardware is now configured. Open Web browser and enter the IP address of the power supply to view the Home page of the power supply. Refer to Figure 6-10.

6.4.2 Network Setup Using Auto-IP (Direct Connection between Asterion power Supply and PC using Cross cable)

This setup requires that DHCP and Auto-IP is ON (Refer to Figure 6-2). DHCP and Auto-IP can be enabled using the front panel or the serial interface as described in the Section 6.4.1.1 and Section 6.4.1.2 respectively.

Since the setup is not connected to the DHCP server, Asterion DC Power Supply will assign itself an IP address in the IP address range from 169.254.0.1 to 169.254.255.254 with a subnet mask of 255.255.0.0.

6.4.2.1 IP ADDRESS IDENTIFICATION FOR AUTO-IP MODE OF OPERATION

1. Start with the power supply in the power-off state.
2. Connect a crossover cable from the Asterion DC power supply directly to your PC.
3. If the PC is already configured to obtain an IP address automatically, skip to Step 4. Otherwise:
   a. In Windows click Start, Settings, Control Panel.
   b. Click open Network Connections.
   c. In the Network Connections window, right click the icon for the network adapter used to connect to the power supply and click Properties.
   d. Find the TCP/IP protocol item under the Configuration tab and click Properties. Select Obtain an IP Address Automatically.
   e. Click OK to save the change.
   f. Click OK again to apply the settings to the network adapter.
4. In Windows, click Start, and then Run…
5. In the Run window, type “ipconfig /release” and click OK.
6. Again, click Start, and then Run…
7. In the Run window, type “ipconfig /renew” and click OK. Your PC will assign itself an IP address in the Auto-IP range.
8. Power on the power supply and allow the power supply to perform its initialization.
9. Identify the IP address assigned to the power supply by following ways.
   a. Discovering it with a VXI-11 compliant discover program.
   b. Using front panel and navigating to Home → Control Interface → LAN → LAN Settings. Refer to Figure 6-4.
   c. Using a computer serial communications program such as Tera Term, set for the same baud as Asterion DC power supply (see Figure 6-5) no parity, 8 data bits, 1 stop bit. Use SCPI command `SYST:NET:IP? <Enter>` to get the IP address.

10. The Asterion DC power supply Ethernet hardware is now configured. Open Web browser and enter the IP address of the power supply to view the Home page of the power supply. Refer to Figure 6-10.

### 6.4.3 Network Setup using Static IP

This setup requires that DHCP is OFF. DHCP mode can be made OFF using the front panel or using the serial interface.

#### 6.4.3.1 STATIC IP SETUP USING FRONT PANEL

Navigate to Home → Control Interface → LAN → LAN Configure. Make the DHCP as OFF, See Figure 6-2. LAN Screen (Configure). IP address button will be enabled.

![Figure 6-6. LAN configure (Settings)](image)

Upon Pressing the IP Address, keypad to enter IP address will pop-up.

![Figure 6-7. LAN Screen (Configure Static IP)](image)

1. Enter the required IP address, Subnet Mask and Gateway (Refer to Figure 6-6).
2. Press “Apply” button for the settings to take effect.
3. The Asterion DC power supply Ethernet hardware is now configured. Open Web browser and enter the IP address of the power supply to view the Home page of the power supply. Refer to Figure 6-10.
6.4.3.2 STATIC IP SETUP USING THE SERIAL INTERFACE

1. Connect using a computer serial communications program such as Tera Term, set for the same baud as Asterion DC power supply (Refer to Figure 6-5) no parity, 8 data bits, 1 stop bit. Refer section 4.2.2 for more details.

2. Turn OFF DHCP mode using the SCPI command, SYST:NET:DHCPMODE 0.

3. Set the IP address by typing SYST:NET:IP “xxx.xxx.xxx.xxx” <enter> (where xxx.xxx.xxx.xxx is the new IP address). For example, to set 192.168.0.200 as the IP address, type SYST:NET:IP “192.168.0.200” <enter>.

   NOTE: The format requires a single space after SYST:NET:IP and double quotes around the IP address numbers.


5. Set the gateway with SYST:NET:GATE xxx.xxx.xxx.xxx <enter>.

6. Type SYST:NET:APPLY <enter> to apply the Static IP configuration.

7. After configuring all settings, verify with the queries, SYST:NET:IP? <enter>.


9. The Asterion DC power supply Ethernet hardware is now configured. Open Web browser and enter the IP address of the power supply to view the Home page of the power supply. Refer to Figure 6-10.

10. Programming/Communication Via Ethernet

    With the Ethernet option, there are three basic methods to communicate with the power supply from a PC:

    - Raw socket interface, sending delimited strings
    - Application program that utilizes VXI-11 Discovery protocol
    - Web browser

6.4.4 Raw Socket Interface

The essential components of communicating via a raw socket interface are the socket number, IP address and command delimiter. The default values are: socket = 52000, IP address = 192.168.0.200 (when DHCP is disabled), and delimiter = line feed <CRLF>. We can set the static IP address, Subnet Mask and Gateway using web browser (refer to Section 6.5.2) or the RS232C interface.

For convenience and to comply with the proposed VXI™ standard, the VISA resource name is available on the home page of the power supply’s Web server.

6.4.5 VXI-11 Protocol

With programs such as National Instrument’s NI-VISA, the VXI-11 protocol allows the power supply to be easily configured in a test system.
6.4.6 Web Server

To communicate with the power supply via the built-in Web server, open a Web browser and type the IP address of the power supply in the “Address” field. Tap the ENTER key to launch the power supply’s Ethernet Web page interface.

6.5 ETHERNET WEB PAGES, OVERVIEW

The layout of each of the Web pages includes the banner showing the Model (e.g AST 60/125), Manufacturer (AMETEK Programmable Power), AMETEK Logo and the Device name (e.g. LXI-ASTDC60-125D1C-E00). Below the Asterion DC power supply banner are four tabs, each linked to its corresponding page. Refer to Figure 6-8.

![Figure 6-8. Asterion DC power Supply Banner and Tab](image)

When navigating to the Ethernet Web pages by clicking their tabs, you will find that the HOME page (default), Interactive Control and LXI Identification can be accessed without logging in. You must enter User ID and Password (For default values, refer to Section 6.2.1) for accessing the IP Configuration Tab. Refer to Figure 6-9.

![Figure 6-9. Login Window](image)
6.5.1 **Home**

This is the default, information-only page (see Figure 6-10). It displays all the current information about the supply that you are connected to:

![Figure 6-10. Asterion DC power Supply Home Page](image)

- **Model** number, the **Manufacturer**, and the **Serial Number** of your Asterion DC power supply.
- **VISA Resource** identifies the specific resource name used to communicate via VISA (Virtual Instrument Software Architecture).
- **LXI Version**: the version and instrument class of the LXI™ standard with which your power supply is compliant.
- **Host Name**: either the default or user-defined, network-unique identity (Must be limited to 15 characters or less for LXI compliance).
- **Description**: either the default or user-defined description of the power supply in use.
- **MAC Address**: the power supply Ethernet's unique hardware address.
- **TCP/IP Address**: your power supply's address actually in use at start-up; can be statically configured, DHCP acquired (default), or Auto-IP assigned (see description for IP CONFIGURATION page).
- **Subnet Mask**: network segment your power supply is on.
• **Gateway**: IP address through which the instrument communicates with systems that are not on the local subnet.

• **Firmware Version**: the version of the firmware that is currently installed.

• **Device Identify**: When set button is pressed the following screen will appear. Refer to Figure 6-11

![Figure 6-11. Asterion DC Power supply Device Identify](image)

### 6.5.2 IP Configuration

To access this web page, users need to login using the User ID and Password (For default values, refer to Section 6.2.1). You are only required to complete the information for the parameters that you wish to change, all previously entered and saved information remains by default (Refer to Figure 6-12).

![Figure 6-12. Asterion DC power supply IP Configuration Page](image)

**Host Name**: the default host name is ASTDCV-I-SI:No. For eg: for 60V/125A device; the default host name is ASTDC60-125-1234.

You may change this name as long as it is unique (Host Name must be limited to 15 characters for LXI compliance) so that VXI-11 Discovery and any other IP Discovery program can identify your specific device on your network.
Ethernet Configuration and Remote Programming

To change: Type the new name (15 characters maximum) in the blank field provided and click **Apply** to update (or make all desired changes before clicking **Apply**).

**Description:** you may change the default factory setting to something more meaningful to your current setup.

To change: Type your customized description, up to 36 characters, in the blank field provided, and click **Apply** to update (or make all desired changes before clicking **Apply**).

**TCP/IP Configuration:** the power supply can operate in DHCP or Static IP Configuration.

You may statically assign an IP address as well as configure other Ethernet/LAN parameters (Subnet Mask and Gateway) or use DHCP for automatic assignment of an IP address.

**Static IP Configuration:** Click the radio button next to **Static IP** to manually configure some or all of the following the Ethernet/LAN parameters:

- **IP Address** – input any standard IP address. (Factory setting is 192.168.0.200). Click **Apply** and enter the new IP address in LXI web browser to view the Home page of the power supply. Refer to Figure 6-10. If you have changed the network portion of the IP address, it may be necessary to alter the network settings of your attached computer to reconnect to the power supply.

- **Subnet Mask** – input a value that identifies which network segment your power supply is on, consisting of 4 whole numbers, each ranging from 0 through 255, separated by periods. (Factory setting is 255.0.0.0, a class-C network subnet mask). Click **Apply** to update (or make all desired changes before clicking **Apply**).

- **Gateway** – input the IP Address of any gateway that stands between the instrument and any other network entities that communicate with the power supply. (No factory setting). Click **Apply** to update (or make all desired changes before clicking **Apply**).

**DHCP Configuration:** Click the radio button next to **DHCP**, for dynamic address acquisition from the DHCP server.

**Auto IP:** If it is enabled, when there is no DHCP server available, the power supply will assign itself an IP address in the range from 169.254.0.1 to 169.254.255.254 with a subnet mask of 255.255.0.0.

- Click in the box next to Auto IP to check (enable Auto IP); click again to uncheck (disable Auto IP) (Refer to Figure 6-11)
6.5.3 Interactive Control

This web page allows to input a properly formatted SCPI command (refer to Section 9). Click on Send Command button to send the command to the Asterion DC power Supply. The commands and response to the query command can be seen on the web page (Refer to Figure 6-13).

![Figure 6-13. Interactive Control Page](image)
6.5.4 **LXI Identification**

The LXI Identification web page displays the LXI parameters of the Asterion DC Power Supply (Refer to Figure 6-14).

![LXI Identification Page](image)

*Figure 6-14. LXI Identification Page*
This page intentionally left blank.
7.1 REAR PANEL

This section provides illustrations of the Asterion DC power supply’s rear panel layout, which differs among the Asterion DC models. For example, see Figure 7-1. Regardless of the layout, the component functions are common across all models, and those that are pertinent to the IEEE488.2 GPIB(Optional) options are described here.

Figure 7-1. Rear Panel – IEEE 488.2 GPIB Interface

1- IEEE 488.2 GPIB Connector
2- Remote Analog Programming External User Control Interface connector
7.2 REMOTE PROGRAMMING VIA IEEE488.2 GPIB CONNECTOR

7.2.1 Address Selection

GPIB address for unit can be (1-30). SCPI reserves channel 0 as the global channel to address all channels.

Asterion DC power supply’s GPIB address can be configured by using the front panel menu, Refer to Figure 7-2. To navigate to GPIB screen, go to Home → Control Interface → GPIB.

![GPIB Screen](image)

Figure 7-2. GPIB Screen

7.2.2 Power-On GPIB Service Request (PON SRQ) Selection

PON SRQ can be enable using the front panel menu, see Figure 7-2. When PON SRQ is enabled, a GPIB service request will be sent by the power supply to the computer controller on Power ON.

7.2.3 Shield Ground

Connects GPIB cable shield to chassis ground.

7.2.4 IEEE 488.2 GPIB Setup Procedure

1. Set the rear panel Local/Remote switch to Remote (ON).
2. Set the GPIB address via the front panel menu, see Figure 7-2.
3. Connect GPIB cable from the controlling computer to the Asterion DC power supply’s.
   NOTE: If operating in an inherently noisy environment, e.g., high RF or other radiated emissions, a double-shielded GPIB cable is recommended.
4. Connect power to the unit and turn on the unit.
5. Using a GPIB communication software, test the communication interface by issuing the *IDN? Command. This returns the supply’s model and serial numbers, and software version(s). This command does not affect the output of the supply.
8 REMOTE ANALOG PROGRAMMING AND EXTERNAL USER CONTROL INTERFACE CONNECTOR

8.1 INTRODUCTION

This section provides illustrations of the Asterion DC power supply’s rear panel layout, which differs among the Asterion DC models. For example, Refer to Figure 8-1. Regardless of the layout, the component functions are common across all models and those that are pertinent to the Remote Analog Programming and External user control Interface Connector is described here. The analog programming and external user interface control functionality can be exercised from either of the communication interfaces (RS232, USB, Ethernet and IEEE 488.2 GPIB).

![Figure 8-1. Rear Panel - Analog Programming Connector](image)

1. Remote Analog Programming and External User Control Interface Connector

8.2 REMOTE ANALOG PROGRAMMING CONNECTOR DETAILS

A 44-pin Subminiature-D connector (Refer to Figure 8-2) located at the rear panel provides remote analog programming and external user interface control signals to increase the user’s operating control of the supply. The mating receptacle is NORCOMP 180-044-102L001 with 44 Pin male terminals. The connector terminals accommodate wire sizes from #24 - #30.
### Analog Programming

**Figure 8-2 Remote Analog Programming and External User Control Interface Connector Pin-Out**

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1   | ISO HV ON/OFF   | ISO HV INPUT| Isolated remote-control input for output on/off with an applied AC/DC voltage source. A positive (+) 6-120 VDC or an AC input of 12-240 VAC will enable (turn-on) the output of the supply. This control input is optically isolated from the output power negative terminal of the power supply (up to 500 VDC).

Signal return: Pin 16 (ISO RTN), Circuit is electrically isolated from the output power negative terminal

Input impedance: 5 kΩ, typical |
| 2   | Not used        | N/A         | N/A                                                                                                                                                                                                       |
| 3   | VPRG_ISOUR      | ANALOG INPUT| Remote control input for voltage programming using a resistance connected between this pin and signal return. Current Source of 1 mA is internally connected to this pin to enable resistance programming.

Signal return: Pin 18, Circuit is electrically connected to the output power negative terminal

Range: 0 kΩ to user selectable maximum range (2 kΩ to 10 kΩ) for 0 to full scale rated Output

**Note:** Do not exceed resistance of maximum 20 kΩ |
| 4   | VPRG_VSOUR/ VPRG_4-20mA | ANALOG INPUT | Remote control input for voltage programming using a voltage source connected between this pin and signal return.

Signal return: Pin 18, Circuit is electrically connected to the output power negative terminal

Range: 0 V to user selectable maximum range (2 V to 10 V) for 0 to full scale rated Output

Input impedance: 20 kΩ, typical |
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>OVPRG_VSOUR</td>
<td>ANALOG INPUT</td>
</tr>
<tr>
<td></td>
<td>Remote control input for overvoltage programming using a voltage source connected between this pin and signal return.</td>
<td>Range: 0.25 V to user selectable maximum range (2 V to 10 V) for 5% to 110% of the full-scale Output Voltage.</td>
</tr>
<tr>
<td></td>
<td>Note: Do not exceed an input of 25 VDC</td>
<td>Remote control input for overvoltage programming using a voltage source connected between this pin and signal return.</td>
</tr>
<tr>
<td></td>
<td>Input impedance: 500 Ω, typical</td>
<td>Range: 4 mA to 20 mA for 0 to full scale rated Output</td>
</tr>
<tr>
<td>6</td>
<td>VMON</td>
<td>ANALOG OUTPUT</td>
</tr>
<tr>
<td></td>
<td>Monitor signal for output voltage</td>
<td>Signal return: Pin 22, Circuit is electrically connected to the output power negative terminal</td>
</tr>
<tr>
<td></td>
<td>Output impedance: 100 Ω, typical</td>
<td>Minimum recommended Load: 100 kΩ, typical</td>
</tr>
<tr>
<td>7</td>
<td>DIO_IN2</td>
<td>DIGITAL INPUT</td>
</tr>
<tr>
<td></td>
<td>User digital input, function to be assigned by user.</td>
<td>Signal connects to Open-anode of opto-isolator diode with 1kΩ series resistor internal to power supply</td>
</tr>
<tr>
<td></td>
<td>Low state 0.3 V max, High State 2.7 V min.</td>
<td>Signal return: Pin 12, Circuit is electrically connected to the output power negative terminal</td>
</tr>
<tr>
<td>8</td>
<td>TRIGGER_IN</td>
<td>DIGITAL INPUT</td>
</tr>
<tr>
<td></td>
<td>Input signal, TTL active-high; provides external hardware triggering of voltage and current ramp functions.</td>
<td>Signal connects to Open-anode of opto-isolator diode with 1kΩ series resistor internal to power supply.</td>
</tr>
<tr>
<td></td>
<td>Signal return: Pin 12, Circuit is electrically connected to the output power negative terminal</td>
<td>Signal connects to Open-anode of opto-isolator diode with 1kΩ series resistor internal to power supply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>DIO_IN1</td>
<td>DIGITAL INPUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User digital input, function to be assigned by user.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal connects to Open-anode of opto-isolator diode with 1kΩ series resistor internal to power supply.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal return: Pin 12, Circuit is electrically connected to the output power negative terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage Rating: Maximum 24 V, Minimum -5V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low state 0.3 V max, High State 2.7 V min.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>REV_RY_EN</td>
<td>DIGITAL INPUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User digital input, enables high output on pin 38.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal connects to Open-anode of opto-isolator diode with 1kΩ series resistor internal to power supply.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal return: Pin 12, Circuit is electrically connected to the output power negative terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage Rating: Maximum 24 V, Minimum -5V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low state 0.3 V max, High State 2.7 V min.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OUT_RY_EN</td>
<td>DIGITAL INPUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User digital input, enables high output on pin 37.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal connects to Open-anode of opto-isolator diode with 1kΩ series resistor internal to power supply.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal return: Pin 12, Circuit is electrically connected to the output power negative terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage Rating: Maximum 24 V, Minimum -5V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low state 0.3 V max, High State 2.7 V min.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DIN_RTN</td>
<td>RETURN FOR DIGITAL INPUTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Return/GND. Internally, pins 12, 14, 15, 18, 22, 28, 29, 36, 40, and 41 are kept at the same DC potential. Circuit is electrically connected to the output power negative terminal.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Remote ON/OFF / ESTOP</td>
<td>ON/OFF control INPUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control input for Output ON/OFF.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch/Relay contact closure or direct short-circuit from this terminal to signal return will enable (turn-on) the output of the supply</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remote circuit must sink up to 3 mA from 5 VDC to enable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal return: Pin 14, Circuit is electrically connected to the output power negative terminal</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Remote ON/OFF_RTN</td>
<td>RETURN FOR REMOTE ON/OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Return/GND. Internally, pins 12, 14, 15, 18, 22, 28, 29, 36, 40, and 41 are kept at the same DC potential.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal Name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>15</td>
<td>USER_POWER_RTN*</td>
<td>Return/GND. Internally, pins 12, 14, 15, 18, 22, 28, 29, 36, 40, and 41 are kept at the same DC potential.</td>
</tr>
<tr>
<td>16</td>
<td>ISO_RTN / RTN_HV</td>
<td>Dedicated Return for pins 1 and 31 (ISO HV ON/OFF and ISOTTL ON/OFF). This control return is optically isolated from the output power negative terminal (up to 500 VDC).</td>
</tr>
<tr>
<td>17</td>
<td>Not used</td>
<td>N/A</td>
</tr>
<tr>
<td>18</td>
<td>EXT_PRG_RTN*</td>
<td>Return/GND. Internally, pins 12, 14, 15, 18, 22, 28, 29, 36, 40, and 41 are kept at the same DC potential. Circuit is electrically connected to the output power negative terminal.</td>
</tr>
</tbody>
</table>
| 19| IPRG_VSOUR / IPRG_4-20mA_SOUR | Remote control input for current programming using a voltage source connected between this pin and signal return.  
Signal return: Pin 18, Circuit is electrically connected to the output power negative terminal  
Range: 0 V to user selectable maximum range (2 V to 10 V) for 0 to full scale rated Output  
Input impedance: 20 kΩ, typical  
Note: Do not exceed an input of 25 VDC  
This remote-control input can be configured to take 4-20 mA current input for current programming. Uses same signal return pin 18 for 4-20 mA input type also.  
Fixed range from 4 mA to 20 mA for 0 to full scale rated Output  
Input impedance: 500 Ω, typical |
| 20| IPRG_RES / IPRG_ISOUR     | Remote control input for current programming using a resistance connected between this pin and signal return.  
Current Source of 1 mA is connected to this pin from the power supply to enable resistance programming.  
Signal return: Pin 18, Circuit is electrically connected to the output power negative terminal  
Range: 0 kΩ to user selectable maximum range (2 kΩ to 10 kΩ) for 0 to full scale rated Output  
Note: Do not exceed resistance of maximum 20 kΩ |
<p>| 21| IMON                      | Monitor signal for output current                                                                                                           |</p>
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>MON_RTN</td>
<td>Return/GND. Internally, pins 12, 14, 15, 18, 22, 28, 29, 36, 40, and 41 are kept at the same DC potential. Circuit is electrically connected to the output power negative terminal</td>
</tr>
<tr>
<td>23</td>
<td>Not used</td>
<td>N/A</td>
</tr>
<tr>
<td>24</td>
<td>TRIGGER_OUT</td>
<td>Output signal, active-low; synchronization pulse of 10 ms when a change in the output occurs. Internal to power supply, signal output is from driver connected to open-collector of opto-isolator transistor. Output high state either min 3V or voltage on pin 30 minus 1V, whichever is higher. Signal return: Pin 28, Circuit is electrically connected to the output power negative terminal. Voltage Rating: Maximum 30 V, Minimum 3V for Active High, Current: 4A peak drive, 0.25A continuous drive capable.</td>
</tr>
<tr>
<td>25</td>
<td>DIO_OUT1</td>
<td>User digital output. Output low for CV and high for CC. Internal to power supply, signal output is from driver connected to open-collector of opto-isolator transistor. Output high state either min 3V or voltage on pin 30 minus 1V, whichever is higher. Signal return: Pin 28, Circuit is electrically connected to the output power negative terminal. Voltage Rating: Maximum 30 V, Minimum 3V for Active High, Current: 4A peak drive, 0.25A continuous drive capable.</td>
</tr>
<tr>
<td>26</td>
<td>FAULT</td>
<td>High state indicates fault. Internal to power supply, signal output is from driver connected to open-collector of opto-isolator transistor. Output high state either min 3V or voltage on pin 30 minus 1V, whichever is higher. Signal return: Pin 28, Circuit is electrically connected to the output power negative terminal.</td>
</tr>
<tr>
<td>Pin</td>
<td>Description</td>
<td>Signal Return</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>27</td>
<td>DIO_OUT2 Digital Output</td>
<td>Pin 28</td>
</tr>
<tr>
<td>28</td>
<td>DOUT_RTN * Return for Digital Outputs</td>
<td>Pin 16 (ISO RTN)</td>
</tr>
<tr>
<td>29</td>
<td>AUX5_RTN * Return for Auxiliary 5V Power Output</td>
<td>Pin 15</td>
</tr>
<tr>
<td>30</td>
<td>USER_POWER User Power Input</td>
<td>Pin 15</td>
</tr>
<tr>
<td>31</td>
<td>ISOTTL_ON/OFF ISO TTL On/Off Control Input</td>
<td>Pin 18</td>
</tr>
<tr>
<td>32</td>
<td>Not used N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>33</td>
<td>PPRG_VSOUR / PPRG_4-20mA SOUR Analog Input</td>
<td>Pin 18</td>
</tr>
</tbody>
</table>

Voltage Rating: Maximum 30 V, Minimum 3V for Active High, Current: 4A peak drive, 0.25A continuous drive capable.
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Input Type</th>
<th>Additional Information</th>
</tr>
</thead>
</table>
| 34  | PPROG_RES / PPRG_ISOURED | ANALOG INPUT | Range: 0 V to user selectable maximum range (2 V to 10 V) for 0 to full scale rated Output  
Input impedance: 20 kΩ, typical  
Note: Do not exceed an input of 25 VDC  
This remote-control input can be configured to take 4-20 mA current input for power programming. Uses same signal return pin 18 for 4-20 mA input type also.  
Fixed range from 4 mA to 20 mA for 0 to full scale rated Output  
Input impedance: 500 Ω, typical |
| 35  | PMON | ANALOG OUTPUT | Monitor signal for output power  
Signal return: Pin 22, Circuit is electrically connected to the output power negative terminal  
Range: 0 V to 10 V corresponds to 0-100% full-scale output. PMON range at full scale output can be modified using SCPI command. Refer to SOURCE SCPI command Subsystem.  
Output impedance: 100 Ω, typical  
Minimum recommended Load: 100 kΩ, typical  
Maximum Load: 20 kΩ |
| 36  | DOUT_RTN | RETURN FOR DIGITAL OUTPUTS | Return/GND. Internally, pins 12, 14, 15, 18, 22, 28, 29, 36, 40, and 41 are kept at the same DC potential. Circuit is electrically connected to the output power negative terminal. |
| 37  | DO3 / OUT_RY_ON | DIGITAL OUTPUT | User digital output, cause to be assigned by user or state of pin 11. Internal to power supply, signal output is from driver with input signal connected to open-collector of opto-isolator transistor. Output high state either min 3V or voltage on pin 30 minus 1V, whichever is higher.  
Signal return: Pin 36, Circuit is electrically connected to the output power negative terminal |
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>DO4 / REV_RY_ON</td>
<td>DIGITAL OUTPUT</td>
</tr>
<tr>
<td>39</td>
<td>AUX5_EN</td>
<td>DIGITAL INPUT</td>
</tr>
<tr>
<td>40</td>
<td>AUXEN_RTN*</td>
<td>RETURN FOR AUXILIARY ENABLE DIGITAL INPUTS</td>
</tr>
<tr>
<td>41</td>
<td>AUX15_RTN*</td>
<td>RETURN FOR AUXILIARY 5V POWER OUTPUT</td>
</tr>
<tr>
<td>42</td>
<td>AUX15_OUT</td>
<td>AUXILIARY USER POWER 15V OUTPUT</td>
</tr>
<tr>
<td>43</td>
<td>AUX5_OUT</td>
<td>AUXILIARY USER POWER 5V OUTPUT</td>
</tr>
<tr>
<td>44</td>
<td>AUX15_EN</td>
<td>DIGITAL INPUT</td>
</tr>
</tbody>
</table>

Voltage Rating: Maximum 30 V, Minimum 3V for Active High, Current: 4A peak drive, .25A continuous drive capable.

User digital output, cause to be assigned by user or state of pin 10. Internal to power supply, signal output is from driver with input signal connected to open-collector of opto-isolator transistor. Output high state either min 3V or voltage on pin 30 minus 1V, whichever is higher. Signal return: Pin 36, Circuit is electrically connected to the output power negative terminal

Voltage Rating: Maximum 30 V, Minimum 3V for Active High, Current: 4A peak drive, .25A continuous drive capable.

User digital input, enables output on pin 43. Apply a high to enable output on pin 43. Signal return: Pin 40, Circuit is electrically connected to the output power negative terminal

Return/GND. Internally, pins 12, 14, 15, 18, 22, 28, 29, 36, 40, and 41 are kept at the same DC potential. Circuit is electrically connected to the output power negative terminal.

15V user power output, 1A max current. Signal return: Pin 41, Circuit is electrically connected to the output power negative terminal.

5V user power output, 1A max current. Signal return: Pin 29, Circuit is electrically connected to the output power negative terminal.

User digital input, enables output on pin 42. Apply a high to enable output on pin 42. Signal return: Pin 40, Circuit is electrically connected to the output power negative terminal.

* With the option, Remote Isolated Analog Interface control, the control signal return is isolated from the output power negative terminal.

**Table 8–1. Analog Programming Connector, Designations and Functions**
8.3 REMOTE ANALOG PROGRAMMING

Remote programming is used for applications that require the output parameters be programmed (controlled) from a remote instrument. An external resistance or voltage or 4-20mA can be used as a programming source. External Source of programming (Resistance, Voltage or 4-20mA) is common for Output Voltage, Current and Power when remote programming mode is selected as External. When using remote programming, a shielded, twisted-pair cable is recommended to prevent noise interference to programming signals.

8.3.1 REMOTE PROGRAMMING BY RESISTANCE

Remote Analog reference source of the Output Voltage, Current and Power can be selected as resistance by sending the following SCPI Command:

SOUR:ANALOG:PROG:SOUR CURR

8.3.1.1 REMOTE CURRENT PROGRAMMING BY RESISTANCE

Analog Reference source is selected as Resistance and programming mode of output current as external by sending following SCPI commands.

SOUR:ANALOG:PROG:SOUR CURR

SOUR:CURR:PROG EXT

The resistance-programming default coefficient for output current is (100% rated output current) / 5 kΩ, with input at Pin 20 (IPRG_ISOUR) and return to Pin 18 (RTN_PRG). Refer to Figure 8-3. An internal current source, factory-set at 1 mA, from Pin 20 is utilized to drive the resistance. This produces a transfer function for output current, as follows:

\[ I_{\text{out}} = R \times \frac{(100\% \text{ rated output current})}{5 \text{ k}\Omega} \], with R in kohms.

Full Scale current programming resistance can be modified from default 5kOhms to any other value, from 2 kOhm to 10 kOhm.

For example, To set 10 kOhms as full scale for Current programming send below command.

SOUR:CURR:PROG:FSCR 10

Then the transfer function for output current, as follows:

\[ I_{\text{out}} = R \times \frac{(100\% \text{ rated output current})}{FSC \text{ k}\Omega} \], with R in kohms.

If multiple switches or relays are used to select resistors to program different current levels, make-before-break contacts are recommended.
8.3.1.2 REMOTE VOLTAGE PROGRAMMING BY RESISTANCE

Analog Reference source is selected as Resistance and programming mode of output Voltage as external by sending following SCPI command.

SOUR:ANALOG:PROG:SOUR CURR

SOUR:VOLT:PROG EXT

The resistance-programming default coefficient for output voltage is 
(100% rated output voltage) / 5 kΩ, with input at Pin 3 (VPRG_ISOUR) and return to 
Pin 18 (RTN_PRG). Refer to Figure 8-4. An internal current source, factory-set at 1 
mA, from Pin 20 is utilized to drive the resistance. This produces a transfer function 
for output voltage, as follows:

\[ V_{out} = R \times \frac{(100\% \text{ rated output voltage})}{5 \text{ kΩ}} \], with \( R \) in kohms.

Full Scale voltage programming resistance can be modified from default 5kOhms to 
any other value, from 2 kOhm to 10 kOhm. For example, To set 10 kOhms as full scale 
for Voltage programming send below command

SOUR:VOLT:PROG:FSCR 10

Then the transfer function for output voltage, as follows:

\[ V_{out} = R \times \frac{(100\% \text{ rated output voltage})}{\text{FSC kΩ}} \], with \( R \) in kohms.
8.3.1.3 Remote Power Programming by Resistance

Analog Reference source is selected as Resistance and programming mode of output Power as external by sending following SCPI command.

**SOUR:ANALOG:PROG:SOUR CURR**

**SOUR:POW:PROG EXT**

The resistance-programming default coefficient for output power is \((100\% \text{ rated output power}) / 5 \text{ kΩ}\), with input at Pin 34 (PPRG_ISOUR) and return to Pin 18 (RTN_PRG). Refer to Figure 8-5. An internal current source, factory-set at 1 mA, from Pin 20 is utilized to drive the resistance. This produces a transfer function for output power, as follows:

\[
P_{out} = R * \left(\frac{100\% \text{ rated output power}}{5 \text{ kΩ}}\right), \text{ with } R \text{ in kohms.}
\]

Full Scale power programming resistance can be modified from default 5kOhms to any other value, from 2 kOhm to 10 kOhm. For example, To set 10 kOhms as full scale for Power programming send below command

**SOUR:POW:PROG:FSCR 10**

Then the transfer function for output power, as follows:

\[
P_{out} = R * \left(\frac{100\% \text{ rated output power}}{\text{FSC kΩ}}\right), \text{ with } R \text{ in kohms.}
\]

---

**Figure 8-4 Remote Voltage Programming Using Resistance**

**Figure 8-5 Remote Power Programming Using Resistance**
8.3.2 Remote Programming BY VOLTAGE

Remote Analog reference source of the Output Voltage, Current and Power can be selected as Voltage by sending the following SCPI Command:

SOUR:ANALOG:PROG:SOUR VOLT

8.3.2.1 Remote Current Programming by Voltage Source

Analog Reference source is selected as Voltage and programming mode of output Current as external by sending following SCPI command.

SOUR:ANALOG:PROG:SOUR VOLT

SOUR:CURR:PROG EXT

The DC voltage source is connected between Pin 19 (IPRG_VSOUR) and the return Pin 18 (RTN_PRG), refer to Figure 8-6. Default FSC voltage value is 10V, where 10V corresponds to 100% output current. The corresponding voltage-programming coefficients for output current are (100% rated output current) / FSC VDC. This produces transfer functions for output current, as follows:

I_{out} = \frac{V_{dc} \times (100\% \text{ rated output current})}{10 \text{ VDC}}, \text{ with } V_{dc} \text{ in volts, or }

I_{out} = \frac{V_{dc} \times (100\% \text{ rated output current})}{\text{FSC VDC}}, \text{ with } V_{dc} \text{ in volts.}

The Full-Scale voltage value can be modified to any voltage between 2V to 10V from below SCPI command. For example, To set 5V as full scale for Current programming send below command

SOUR:CURR:PROG:FSC 5

Figure 8-6 Remote Current Programming Using 0-5 VDC or 0-10 VDC Source

8.3.2.2 Remote Voltage Programming by Voltage Source

Analog Reference source is selected as Voltage and programming mode of Output
Voltage as external by sending following SCPI command

**SOUR:ANALOG:PROG:SOUR VOLT**

**SOUR:VOLT:PROG EXT**

The DC voltage source is connected between Pin 4 (VPRG_VSOUR) and the return Pin 18 (RTN_PRG). Refer to Figure 8-7. Default FSC voltage value is 10V, where 10V corresponds to 100% output voltage. The corresponding voltage-programming coefficients for output voltage are \((100\% \text{ rated output voltage}) / \text{FSC VDC}\). This produces transfer functions for output voltage, as follows:

\[
V_{out} = V_{dc} \times \left(\frac{100\% \text{ rated output voltage}}{10 \text{ VDC}}\right), \text{ with } V_{dc} \text{ in volts, or}
\]

\[
V_{out} = V_{dc} \times \left(\frac{100\% \text{ rated output voltage}}{\text{FSC VDC}}\right), \text{ with } V_{dc} \text{ in volts.}
\]

The Full-Scale voltage value can be modified to any voltage between 2V to 10V from below SCPI command. For example, To set 5V as full scale for Voltage programming send below command

**SOUR:VOLT:PROG:FSCR 5**

![Figure 8-7 Remote Voltage Programming Using 0-10 VDC Source](image)

### 8.3.2.3 REMOTE POWER PROGRAMMING BY VOLTAGE SOURCE

Analog Reference source is selected as Voltage and programming mode of Output Power as external by sending following SCPI command

**SOUR:ANALOG:PROG:SOUR VOLT**

**SOUR:POW:PROG EXT**

The DC voltage source is connected between Pin 33 (PPRG_VSOUR) and the return Pin 18 (RTN_PRG). Refer to Figure 8-8. Default FSC voltage value is 10V, where 10V corresponds to 100% output power. The corresponding voltage-programming coefficients for output power are \((100\% \text{ rated output power}) / \text{FSC VDC}\). This produces...
transfer functions for output power, as follows:

\[ P_{\text{out}} = \frac{V_{\text{dc}} \times (100\% \text{ rated output power})}{10 \text{ VDC}} \], with \( V_{\text{dc}} \) in volts, or

\[ P_{\text{out}} = \frac{V_{\text{dc}} \times (100\% \text{ rated output power})}{FSC \text{ VDC}} \], with \( V_{\text{dc}} \) in volts.

The Full-Scale voltage value can be modified to any voltage between 2V to 10V from below SCPI command. For example, To set 5V as full scale for Power programming send below command

**Ex** - SOUR:POW:PROG:FSC 5

---

**Figure 8-8 Remote Power Programming Using 0-10 VDC Source**

### 8.3.3 Remote Programming BY 4-20mA SOURCE

Remote Analog reference source of the Output Voltage, Current and Power can be selected as 4-20 mA by sending the following SCPI Command:

SOUR:ANALOG:PROG:SOUR MA420

#### 8.3.3.1 REMOTE CURRENT PROGRAMMING BY 4-20mA SOURCE

Analog Reference source is selected as 4-20mA and programming mode of Output Current as external by sending following SCPI command

SOUR:ANALOG:PROG:SOUR MA420

SOUR:CURR:PROG EXT

A 4-20mA current source is connected between Pin 19 (IPRG_VSOUR) and the return
Pin 18 (RTN_PRG). Refer to Figure 8-9.

The transfer function for the output current will be as follows:

\[ I_{out} = \frac{(I_{4-20mA} - 4) (100\% \text{ rated output current})}{16}, \text{ with } I_{4-20mA} \text{ in mA} \]

Which produces 0A output current at 4mA and 100% rated output current at 20mA.

Figure 8-9 Remote Current Programming Using 4-20mA Source

8.3.3.2 REMOTE VOLTAGE PROGRAMMING BY 4-20MA SOURCE

Analog Reference source is selected as 4-20mA and programming mode of Output Voltage as external by sending following SCPI command

\[ \text{SOUR:ANALOG:PROG:SOUR MA420} \]

\[ \text{SOUR:VOLT:PROG EXT} \]

A 4-20mA current source is connected between Pin 4 (VPRG_VSOUR) and the return Pin 18 (RTN_PRG, Refer to Figure 8-10.

The transfer function for the output voltage will be as follows:

\[ V_{out} = \frac{(I_{4-20mA} - 4) (100\% \text{ rated output voltage})}{16}, \text{ with } I_{4-20mA} \text{ in mA} \]

Which produces 0V output voltage at 4mA and 100% rated output voltage at 20mA.

Figure 8-10 Remote Voltage Programming Using 4-20mA Source
8.3.3.3 **REMOTE POWER PROGRAMMING BY 4-20mA SOURCE**

Analog Reference source is selected as 4-20mA and programming mode of Output Power as external by sending following SCPI command:

```
SOUR:ANALOG:PROG:SOUR MA420
SOUR:POW:PROG EXT
```

A 4-20mA current source is connected between Pin 33 (PPRG_VSOUR) and the return Pin 18 (RTN_PRG). Refer to Figure 8-11.

The transfer function for the output power will be as follows:

\[
P_{\text{out}} = \left( I_{4-20mA} - 4 \right) \left( 100\% \text{ rated output power} \right) / 16, \text{ with } I_{4-20mA} \text{ in mA}
\]

Which sets 0W output power at 4mA and 100% rated power voltage at 20mA.

![Figure 8-11 Remote Power Programming Using 4-20mA Source](image)

8.3.4 **Remote Overvoltage Programming**

A remote DC voltage source can be connected externally between Pins 5 (OVPRG_VSOUR) and Pin 18 (RTN_PRG) to set the output overvoltage trip level. A 0-10 VDC signal equals 0-110% of rated output voltage. See Figure 8-12 for connection requirements. This full-scale programming voltage source range can be set to any value between 2V to 10VDC from front panel. Only External Voltage source can be used for Remote Overvoltage Programming. Refer to below set of SCPI commands.

```
SOUR:VOLT:PROT:PROG EXT
SOUR:VOLT:PROT:PROG:FSC 5
```
8.4 REMOTE MONITOR OUTPUTS

DC Asterion provides independent analog voltage monitor signals for the Output Voltage, Current and Power.

1. Voltage Monitor Output is in Pin 6, Return Pin 22.
2. Current Monitor Output is in Pin 21, Return Pin 22.
4. Full Scale Monitor voltage would correspond to rated output of the power supply. Default Full Scale Monitor Output is 10V. Same can be changed from 2V to 10 V by issuing following SCPI command. For example, to set to 5V as full scale for voltage monitoring send below command:
   `SOUR:VOLT:MON:FSC 5`
5. For the Current monitor to change the full-scale value to 5V, following SCPI command to be used.
   `SOUR:CURR:MON:FSC 5`
6. Similarly, for the Power monitor to change the full-scale value to 5V, following SCPI command to be used.
   `SOUR:POW:MON:FSC 5`

8.5 REMOTE DIGITAL INPUT AND OUTPUT

8.5.1 Auxiliary power output

Asterion DC power supply has the option of two auxiliary power outputs 5 V and 15V. These auxiliary power outputs can be controlled from the power supply remotely or by giving appropriate signals on the digital input enable pins provided for the same.
1. To enable the 5V output remotely following SCPI command to be used:
   **OUTP:AUX:5V ON**

2. To enable the 15V output remotely following SCPI command to be used:
   **OUTP:AUX:15V ON**

3. To Enable the 5V output from remote Digital Input:
   
   Apply a high at pin 39 to enable output on pin 43. Return Pin is 40.
   
   Voltage Rating: Maximum 24 V, Minimum -5V
   Low state 0.3 V max, High State 2.7 V min.

4. To Enable the 15V output from remote Digital Input:
   
   Apply a high at pin 44 to enable output on pin 42. Return Pin is 40.
   
   Voltage Rating: Maximum 24 V, Minimum -5V
   Low state 0.3 V max, High State 2.7 V min.

### 8.5.2 Digital outputs

DC Asterion power supply provides four digital outputs.

**Digital Output 1:** Provides Low state at Constant Voltage (CV) mode of operation and High state at Constant Current (CC) operation. Output signal Pin is 25 and return pin is 28 or 36.

**Digital Output 2:** Provides High state at Constant Power (CP) mode of operation otherwise remains at low state. Output signal Pin is 27 and return pin is 28 or 36.

Digital Output 1 and Output 2 states reflects the query response of following SCPI command.

**SOUR:CURR:MODE?** ------ Returns the mode of operation of the power supply.

<table>
<thead>
<tr>
<th>Command</th>
<th>Response</th>
<th>Digital Output-1</th>
<th>Digital Output-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUR:CURR:MODE?</td>
<td>0</td>
<td>Low State</td>
<td>Low State</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>High State</td>
<td>Low State</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Low State</td>
<td>High State</td>
</tr>
</tbody>
</table>

**Digital Output 3 (OUT_RY_ON):** Output Signal (Pin 37, Return Pin 28 or 36) can be made high by using high signal on the Digital input (Pin 11, Return Pin 12) or by issuing following SCPI Command.

**OUTP:ISOL ON**

**Digital Output 4 (REV_RY_ON):** Output Signal (Pin 38, Return Pin 28 or 36) can be made high by using high signal on the Digital input (Pin 10, Return Pin 12) or by issuing following SCPI Command **OUTP:POL ON.**
For the all the Digital Output, Low state and High state signal level is as follows.
Low state: 0.3 V max
High state: Minimum 3V or Voltage at Pin 30 (User Power) minus 1 V, whichever is higher. Maximum Current is 0.5 A
User Power: 5 V to 24 V (Pin 30), Return Pin for User Power is Pin 36.
Connection diagram to use the signals to control external Isolation and Polarity relays from the DC-Asterion power supply is shown in Figure 8-13.

**CAUTION**
External relays must not be hot-switched; ensure that the voltage across the relay contacts and the current through them is zero prior to changing the relay states.

Analog and external control interface connector

- **OUTPUT +Ve**
- **OUTPUT -Ve**
- **Isolation Relay (Pin 37)**
  - Return Pin 28 or 36
- **Polarity Change Relay (Pin 38)**
  - Return Pin 28 or 36

Note: Voltage level at Pin 37 and Pin 38 is minimum 3 V or the Voltage at User Power Pin 30 minus 1 V, whichever is higher. Maximum Continuous Current that can be drawn is 0.5 A. If the relay coil current required is more an additional current driver to be used to drive the Isolation and Polarity Power Relays.

*Figure 8-13 External Isolation and Polarity Relay interface to Control interface*
8.5.3 Digital Inputs

DC Asterion power supply provides four digital inputs.

Digital Input 1: This input is general purpose and cause can be assigned by the user. Input Signal is Pin 9, Return Pin 12.

Following SCPI command returns 1 or 0.

**SOUR:DIGiNP:DIN1?**

Digital Input 2: This input is general purpose and cause can be assigned by the user. Input Signal is Pin 7, Return Pin 12.

Following SCPI command returns 1 or 0.

**SOUR:DIGiNP:DIN2?**

Digital Input 3 (OUT_RY_EN / DIN3): This input is general purpose and cause can be assigned by the user. Other functionality is that applying high input on this signal would enable high output on Digital Output 3 (OUT_RY_ON). Input signal pin is 11, Return Pin 12.

Following SCPI command returns 1 or 0.

**SOUR:DIGiNP:DIN3?**

Digital Input 4 (REV_RY_EN / DIN4): This input is general purpose and cause can be assigned by the user. High input on this signal would enable high output on Digital Output 3 (OUT_RY_ON). Input signal pin is 10, Return Pin 12.

Following SCPI command returns 1 or 0.

**SOUR:DIGiNP:DIN4?**

Input high and low state levels are as described below.

1-High State 2.7 V min, 24 V max
0-Low state 0.3 V max, -5V min

8.5.4 Fault

Hight state in this pin indicates the Fault in the power supply. Fault Signal Pin is 26, Return Pin is 28. Fault Signal Pin become High whenever there is a fault recorded in the Protection Condition Register. An exception to this Constant Voltage Operation (Bit 0), Constant Current Operation (Bit 1) and Constant Power Operation (Bit 2), as they indicate the operating status of the power supply.

Low state: 0.3 V max

High state: Minimum 3V or Voltage at Pin 30 (User Power) minus 1 V, whichever is higher. Maximum Current is 0.5 A

User Power: 5 V to 24 V (Pin 30), Return Pin for User Power is Pin 36

Following are the list of faults that can be generated:
<table>
<thead>
<tr>
<th>Bit</th>
<th>Hex Value</th>
<th>Description</th>
<th>Explanation</th>
<th>Actions</th>
</tr>
</thead>
</table>
| 3   | 0x08      | Overvoltage Protection Fault       | Output voltage exceeded Over Voltage trip limit.                           | • Check sufficient margin between set voltage and OVP limit  
• Check if OVP is set from external Analog source and sufficient margin between set voltage and OVP limit |
| 4   | 0x10      | Over Temperature Fault             | Power supply internal hardware temperature exceeded limit                  | • Check and make sure there is no Air blockage in the front and rear of the power supply. Make sure Ambient temperature and the Operating Power limit with input line condition is as per the Specifications. If fault persists, Contact factory |
| 5   | 0x20      | External Shutdown                 | External Shutdown activated from External Analog Programming Connector     | • Make sure Pin 13 and Pin 14 are connected for disabling External Shutdown                        |
| 6   | 0x40      | Foldback Mode Operation           | Trip activated due to foldback operation setting                           | • Check the foldback operation setting from OUTP:PROT:FOLD? Query and modify as required          |
| 7   | 0x80      | Remote Programming Error           | Power supply remote programming command is incorrect                       | • Verify the SCPI command sent from remote communication interface is as per programming manual.  
• Verify command sent are not violating any user limits or hardware parameter range specified in datasheet of power supply |
<p>| 8   | 0x100     | Fan Fault                         | Fault from cooling Fan                                                     | • This condition is caused by Fan’s not running properly. Reset the fault or try restarting the power supply and If fault persists, Contact factory. |
| 9   | 0x200     | Line Drop Fault                   | Input voltage to the power supply is not in operating range                | • Check if input voltage to the supply is within specified range in datasheet                    |
| 10  | 0x400     | DC Module Fault                   | Internal DC module hardware fault                                         | • Try restarting the power supply, if fault persists Contact factory                               |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0x800</td>
<td>PFC Fault</td>
<td>Internal PFC module hardware fault • Try restarting the power supply, if fault persists Contact factory</td>
</tr>
<tr>
<td>12</td>
<td>0x1000</td>
<td>OCP Fault</td>
<td>Output overcurrent Fault • By default, this fault is disabled and not accessible to user</td>
</tr>
<tr>
<td>13</td>
<td>0x2000</td>
<td>AUX Supply Fault</td>
<td>Auxiliary Supply to internal hardware fault • Try restarting the power supply, if fault persists Contact factory</td>
</tr>
<tr>
<td>14</td>
<td>0x4000</td>
<td>Line Status Changed</td>
<td>Input voltage changed from Low range to High range or Vice versa • Make sure input voltage is stable at one voltage range. If there is change over in input voltage range power supply's output power limits will be reset based on the limits specified in datasheet</td>
</tr>
<tr>
<td>15</td>
<td>0x8000</td>
<td>Parallel Cable Fault</td>
<td>Chassis Parallel cables PAR IN/PAR OUT or CAN IN/CAN OUT cables are connected or disconnected when power supply is ON • Reset the PAR IN/PAR OUT or CAN IN/CAN OUT cables as required and clear the faults</td>
</tr>
<tr>
<td>16</td>
<td>0x10000</td>
<td>Salve System Fault</td>
<td>One of the Slave units in Parallel/Series chassis configuration NOT responding • Check all slave units in Parallel/Series chassis configuration make sure they are powered ON • Power cycle all the units of Parallel/Series chassis configuration</td>
</tr>
<tr>
<td>17</td>
<td>0x20000</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0x40000</td>
<td>Remote Sense Fault</td>
<td>Remote voltage sensing is out of range from power supply capacity or cable connected to RVS connector fault • Check if the cable connected to RVS connected at rear side power supply is intact and polarity is correct. • Check the output cable voltage drop and make sure voltage drop across cable is not exceeding limit specified in datasheet</td>
</tr>
<tr>
<td>19</td>
<td>0x80000</td>
<td>Regulation Fault</td>
<td>Power supply not able to settle to any of the operating modes CC/CV or CP • Try restarting the power supply, if fault persists Contact factory</td>
</tr>
</tbody>
</table>
8.5.5 **Trigger-In & Trigger Out**

DC Asterion power supply has Trigger-In and Trigger-Out functionality.

**Trigger-In:** Applying a high voltage signal on pin 8 and return pin 12 will trigger the ramp.

- `*CLS` // clear the unit to its power-on default settings.
- `*RST` // reset the unit.
- `SOUR:VOLT 20` // Set the voltage to 20V
- `SOUR:CURR 20` // Set the current to 20A
- `OUTP 1` // Turn on the output
- `SOUR:VOLT:RAMP:HTRIG 25 5` // Give an external trigger i.e. an active high pulse of 10ms on the pin-8 (TRIGGER_IN) and pin-12 (DIN_RTN) to generate the Voltage Ramp. This will ramp the voltage from 20V to 25V in 5 secs

Low state 0.3 V max, High State 2.7 V min

**Trigger-Out:** Active low signal will be generated on the pin 24 and return pin 36 when a change in the output occurs.

8.6 **REMOTE OUTPUT ON/OFF CONTROL**

Remote output on/off control may be accomplished by contact closure, or through an opto-isolated interface with external voltage sources, AC/DC or TTL/CMOS.

8.6.1 **Remote Output ON/OFF by Contact Closure**

Application of a contact closure between Pins 13 and Pin 14 will enable the output (if Output Enable from front panel or SCPI is ON). See Figure 8-14 for connection requirements.

*Figure 8-14 Remote Output On/Off Control by Contact Closure*
8.6.2 Remote Output ON/OFF Control by External Source

Application of AC/DC voltage between Pins 1 and 16, or TTL/CMOS voltage between Pins 31 and 16, will turn on the power supply; this interface is opto-isolated from circuit common. See Figure 8-15 and Figure 8-16 for connection requirements.

Figure 8-15 Remote Output On/Off Using Isolated AC or DC Source

Figure 8-16 Remote Output On/Off Using Isolated TTL/CMOS Source
This page intentionally left blank.
RS232/ETHERNET/ IEEE 488.2 GPIB AND SCPI COMMAND OPERATION

9.1 INTRODUCTION

This section describes the operation of the Digital Interfaces GPIB, USB, RS232 and Ethernet by using SCPI Command sets. The command set comprises of programming, query and status commands that facilitate remote control of the power supply.

9.2 REGISTER DEFINITIONS

The Asterion DC Power Supply supports the IEEE 488.2 GPIB, RS232, Ethernet and SCPI status reporting data structures. These structures are comprised of status registers and status register enable mask pairs. The following sections describe these pairs.

9.2.1 Protection Condition and Protection Event Status Register

These two registers have the same bit meanings, but they differ in function.

9.2.1.1 STATUS PROTECTION CONDITION REGISTER

Read the Protection Condition Register by issuing the following command.

STATus:PROTection:CONDtion?

The above command gives the present status condition of the power hardware, so the data is not latched. It is meant to be used as a polling register. The query value hexadecimal number of 32 bits, the definition corresponding to each bit is listed in Table 9–1. Bit value “1” indicates fault and “0” indicates normal condition.

For Example:
STAT:PROT:COND?
#H0000042  // Response for the above command
which means two bits are set: Constant voltage operation(0x02) and Fold back mode operation(0x40)
9.2.1.2 **STATUS PROTECTION EVENT REGISTER OR FAULT REGISTER**

Read the Protection Event Status Register by issuing the following command.

```
STATus:PROTection:EVENt?
```

Refer Table 9–1 [Error! Reference source not found.](#) for the Protection Event Status Register details. Reading this register clears the Protection Event Status Register. Or clear the Protection Event Status Register by issuing a *CLS command or a *RST command. Bits in the Protection Event Status Register will be set only when the corresponding bit in the Protection Event Status Enable Register is set and the corresponding event occurs. The status is then latched and will remain in that state until it is read or cleared due to some command action.

9.2.1.3 **STATUS PROTECTION ENABLE REGISTER OR FAULT REGISTER**

Set the Status Protection Enable Register with the following command.

```
STATus:PROTection:ENABle <mask>
```

Read the Status Protection Enable Register with the following query command.

```
STATus:PROTection:ENABle?
```

Protection Enable Register Used to select what fault events could set a bit in the Fault Register. Certain faults can occur even if they are not enabled in the Protection Enable Register. This is because the Protection Enable Register merely filters which events are allowed to affect the Fault Register, not whether those events can occur or not.

All the events in the protection condition register causes shutdown to the power supply. An exception to this rule involves the Constant Voltage Operation, Constant Current Operation, Constant Power Operation and Foldback Mode Operation bits. If these bits are not enabled in the protection enable register, then mode changes shall not cause a shutdown.

Figure 9-1 shows the implementation of the Protection Status Register, Protection Enable Register and Protection Event Register. To configure the Power Supply to generate service requests based on the Protection Event Status Register, program both the Protection Event Status Enable Register and the Service Request Enable Register (*SRE). See 9.2.2 and Section 11 SCPI Status Implementation for more details.
### Table 9–1. Protection Condition and Event Status Registers

<table>
<thead>
<tr>
<th>Bit</th>
<th>Hex Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x01</td>
<td>Constant Voltage Operation</td>
</tr>
<tr>
<td>1</td>
<td>0x02</td>
<td>Constant Current Operation</td>
</tr>
<tr>
<td>2</td>
<td>0x04</td>
<td>Constant Power Operation</td>
</tr>
<tr>
<td>3</td>
<td>0x08</td>
<td>Overvoltage Protection Fault</td>
</tr>
<tr>
<td>4</td>
<td>0x10</td>
<td>Over Temperature Fault</td>
</tr>
<tr>
<td>5</td>
<td>0x20</td>
<td>External Shutdown</td>
</tr>
<tr>
<td>6</td>
<td>0x40</td>
<td>Foldback Mode Operation</td>
</tr>
<tr>
<td>7</td>
<td>0x80</td>
<td>Remote Programming Error</td>
</tr>
<tr>
<td>8</td>
<td>0x100</td>
<td>Fan Fault</td>
</tr>
<tr>
<td>9</td>
<td>0x200</td>
<td>Line Drop Fault</td>
</tr>
<tr>
<td>10</td>
<td>0x400</td>
<td>DC Module Fault</td>
</tr>
<tr>
<td>11</td>
<td>0x800</td>
<td>PFC Fault</td>
</tr>
<tr>
<td>12</td>
<td>0x1000</td>
<td>OCP Fault</td>
</tr>
<tr>
<td>13</td>
<td>0x2000</td>
<td>AUX Supply Fault</td>
</tr>
<tr>
<td>14</td>
<td>0x4000</td>
<td>Line Status Changed</td>
</tr>
<tr>
<td>15</td>
<td>0x8000</td>
<td>Parallel Cable Fault</td>
</tr>
<tr>
<td>16</td>
<td>0x10000</td>
<td>Salve System Fault</td>
</tr>
<tr>
<td>17</td>
<td>0x20000</td>
<td>Not Used</td>
</tr>
<tr>
<td>18</td>
<td>0x40000</td>
<td>Remote Sense Fault</td>
</tr>
<tr>
<td>19</td>
<td>0x80000</td>
<td>Regulation Fault</td>
</tr>
<tr>
<td>20</td>
<td>0x100000</td>
<td>Current Feedback Fault</td>
</tr>
<tr>
<td>21-31</td>
<td></td>
<td>Not Used (Always returns zero for these bits)</td>
</tr>
</tbody>
</table>
Fault events which must be enabled by the Protection Enable Register before they are recorded in the fault register.

The Protection Enable Register. Readable using the STAT:PROT:ENAB? query command. Writable using the STAT:PROT:ENAB <value> command. Used to select what fault events could set a bit in the Fault Register. Certain faults can occur even if they are not enabled. In the Protection Enable Register. This is because the Protection Enable Register merely filters which events are allowed to affect the Fault Register, not whether those events can occur or not.

Protection Condition Register –readable using Query Command STAT:PROT:COND?

Fault Register (also called the Protection Event Register). Readable using the STAT:PROT:EVEN? query command.

Note: All the events in the protection condition register causes shutdown to the power supply, An exception to this rule involves the Constant Voltage Operation, Constant Current Operation, and Constant Power Operation.

Figure 9-1. Protection Condition and Protection Event Register

9.2.2 Standard Event Status Register (ESR)

Read the Standard Event Status Register (ESR) by issuing the *ESR? command. See for the Standard Event Status Register bit details. Reading this register or issuing a *CLS command will clear the ESR. Use the *ESE (Standard Event Status Enable Register) to enable corresponding ESR bits to be summarized in the summary bit of the SCPI Status byte. To configure the Power Supply to generate service requests based on the ESR, both the Standard Event Status Enable Register and the Service Request Enable Register must be programmed. See

Figure 9-2 and Section 11 SCPI Status Implementation for further information.

Table 9–2. Standard Event Status Register
### Table 9–3

<table>
<thead>
<tr>
<th>Bit</th>
<th>Hex Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x01</td>
<td>Operation Complete</td>
</tr>
<tr>
<td>1</td>
<td>0x02</td>
<td>Request Control - not used</td>
</tr>
<tr>
<td>2</td>
<td>0x04</td>
<td>Query Error</td>
</tr>
<tr>
<td>3</td>
<td>0x08</td>
<td>Device Dependent Error</td>
</tr>
<tr>
<td>4</td>
<td>0x10</td>
<td>Execution Error (e.g., range error)</td>
</tr>
<tr>
<td>5</td>
<td>0x20</td>
<td>Command Error (e.g., syntax error)</td>
</tr>
<tr>
<td>6</td>
<td>0x40</td>
<td>User Request - not used</td>
</tr>
<tr>
<td>7</td>
<td>0x80</td>
<td>Power On</td>
</tr>
</tbody>
</table>

The SESER (Standard Event Status Enable Register). This register is read using the *ESE? SCPI query command. This register is written to using the *ESE <value> command. A “1” in the appropriate bit location enables that corresponding bit from the SESR to pass through to the input of the OR gate to be included in the SESR summary bit (bit 5) in the SCPI Status Byte.

The SESR (Standard Event Status Register). Masking does not prevent events from setting bits in the SESR. This facilitates polling as a means of detecting these events, since the SESR can be polled (read) using the *ESR? command, irrespective of the bits set or not set in the Standard Event Status Enable Register.

**Figure 9-2. Standard Event Status and Standard Event Status Enable Register**

### 9.2.3 SCPI Status Byte

The SCPI Status Byte registers the status of the instrument, in one of seven bits described in Table 9–3. Read the SCPI Status Byte status register by issuing either the *STB? command or a serial poll. Clear the Status Byte status register by issuing the *CLS command.

**NOTE:** Serial poll is applicable only to GPIB interface.

The Power Supply can be configured to request service from any of the communication interfaces, by setting the appropriate bits in the Service Request Enable Register (SRE), which has the same bit pattern as the status byte. Service Request Enable Register (SRE) can be modified by issuing the *SRE <mask> command. Service Request Enable Register (SRE) can be read by issuing *SRE? query command, See
For example, if the SRE register is set to 0x02 (Protection Event Flag), when the Power Supply has a fault event, Status Byte register will contain 0x42 (RQS and Protection Event Flag) and the SRQ (SRQ is supported only on GPIB) line will be asserted to indicate a request for service. See Figure 9-3 and Section 11 SCPI Status Implementation for further information.

**Table 9–3. SCPI Status Byte**

<table>
<thead>
<tr>
<th>Bit</th>
<th>Hex Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x01</td>
<td>Not used.</td>
</tr>
<tr>
<td>1</td>
<td>0x02</td>
<td>Protection Event Status flag. Indicates the selected protection event occurred.</td>
</tr>
<tr>
<td>2</td>
<td>0x04</td>
<td>Error/event queue message available. Set when any error/event is entered in the System Error Queue. It is read using the SYSTem:ERRor? query.</td>
</tr>
<tr>
<td>3</td>
<td>0x08</td>
<td>Questionable Status flag. Indicates the quality of the current data being acquired. This bit is not used.</td>
</tr>
<tr>
<td>4</td>
<td>0x10</td>
<td>Message available (MAV). Indicates a message is available to read (Only applicable to GPIB Interface).</td>
</tr>
<tr>
<td>5</td>
<td>0x20</td>
<td>Standard Event Status Register (ESR). Summary bit for the ESR. Set when any of the ESR bits are set and cleared when the ESR is read.</td>
</tr>
<tr>
<td>6</td>
<td>0x40</td>
<td>Request Service flag (RQS) for serial polling or Master Summary Status (MSS) in response to *STB? If service requests are enabled (with the *SRE command), this bit represents the RQS and will be sent in response to a serial poll, then cleared. The MSS bit indicates that the device has at least one reason to request service. Even though the device sends the MSS bit in response to a status query (*STB?), it is not sent in response to a serial poll. It is not considered part of the IEEE-488.1 Status Byte.</td>
</tr>
<tr>
<td>7</td>
<td>0x80</td>
<td>Operation Status flag. Indicates the current operational state of the unit. This bit is not used.</td>
</tr>
</tbody>
</table>
9.2.4 Error/Event Queue

The Asterion DC Power Supply maintains an Error/Event Queue as defined by SCPI. The queue holds up to 10 error events. It is queried using the SYSTem:ERRor? command which reads in a First In/First Out (FIFO) manner. The read operation removes the entry from the queue. The *CLS command will clear all entries from the queue.

The following error codes are defined in the SCPI 1995.0 specification and are supported by the Asterion DC Power Supply. Error codes are in the range of [-32768, 32767]. SCPI reserves the negative error codes and 0, while error codes greater than 0 are device specific errors.

Table 9–4 SCPI Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
<td><strong>No channels setup to trigger</strong></td>
</tr>
<tr>
<td></td>
<td>This means that an attempt was made to trigger the DIA using the</td>
</tr>
<tr>
<td></td>
<td>TRIG:TYPE &lt;1</td>
</tr>
<tr>
<td></td>
<td>generated when the GET is received, even when there are no armed trigger</td>
</tr>
<tr>
<td></td>
<td>settings.</td>
</tr>
<tr>
<td>0</td>
<td><strong>No error</strong></td>
</tr>
<tr>
<td></td>
<td>The error queue is empty.</td>
</tr>
<tr>
<td>-102</td>
<td><strong>Syntax error</strong></td>
</tr>
<tr>
<td></td>
<td>An unrecognized command or data type was encountered.</td>
</tr>
<tr>
<td>Error Code</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| -151      | **Invalid string data**  
Correct password. Manufacturer, model, or serial number string was more than 16 characters. Invalid mnemonic. |
| -161      | **Invalid block data**  
The expected number of data values was not received. |
| -200      | **Execution error**  
An error/event number in the range [-299, -200] indicates that an error has been detected by the instruments execution control block. The occurrence of any error in this class shall cause the execution error bit (bit 4) in the Event Status Register to be set. An execution error can be the result of:
- A <program data> element out of range, such as programming 35 volts in a 33-volt device.
- A command could not be executed due to the current condition of the device. |
| -203      | **Command protected**  
Attempted to store calibration values to EEPROM without unlocking. |
| -221      | **Settings conflict**  
Attempted to set output greater than soft limits or to set soft limits less than output. |
| -222      | **Data out of range**  
Parameter exceeded range of valid values. |
| -241      | **Hardware missing**  
A legal command or query could not be executed because of a hardware fault. |
| -340      | **Calibration failed**  
Error during calculation of calibration values occurred. |
| -350      | **Queue overflow**  
The error queue can contain up to 10 entries. If more than 10 error/event conditions are logged before the SYSTem:ERRor? query, an overflow will occur; the last queue entry will be overwritten with error -350. When the queue overflows, the least recent error/events remain in the queue and the most recent error/events are discarded. |
| -360      | **Communication error**  
Communications to a channel was disrupted. |

### 9.2.5 Serial Poll Operation

Performing a serial poll will not modify the SCPI Status Byte other than to clear the RQS (bit 6) for a Asterion DC Power Supply requesting service. Queries affecting the Status Registers and subsequent serial poll are described below:

- \*ESR? clears the ESR and bit 5 of the SCPI Status Register
- SYSTem:ERRor? clears bit 2 of the SCPI Status Register if the queue is empty
9.3 SCPI CONFORMANCE INFORMATION

The syntax of all SCPI commands implemented by the Asterion DC power supplies and documented in this manual, are either SCPI confirmed or they are customized commands not part of the SCPI definition. None of the commands implemented by the Asterion DC power supplies are classified as SCPI approved commands (approved by the SCPI Consortium but not contained in the SCPI version to which the Asterion DC power supplies conform).

To document whether the syntax of each command is SCPI compliant or not, this manual provides a column, labeled “SCPI”, in each command reference table. A “C” in the “SCPI” column means that the command syntax is SCPI compliant; an “N” in the “SCPI” column means that the command syntax is not part of the SCPI definition.

9.3.1 Parameter Definitions

The following table describes the format of the command arguments, when applicable.

<table>
<thead>
<tr>
<th>PARAMETER DEFINITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
</tr>
<tr>
<td>&lt;boolean&gt;</td>
</tr>
<tr>
<td>&lt;NR1&gt;</td>
</tr>
<tr>
<td>&lt;NRF&gt;</td>
</tr>
<tr>
<td>&lt;string&gt;</td>
</tr>
</tbody>
</table>

9.3.2 Conventions

SCPI uses the conventions where optional commands and parameters are enclosed by “[]”. Additionally the shorthand version of a command is indicated by capital letters.

For example,

SOURce:VOLTage[:LEVel][:IMMediate][:AMPLitude] 120.0

can be written as

SOURce:VOLTage 120.0

or

SOUR:VOLT 120.0
9.3.3 **Queries**

The query syntax is identical to the command syntax with a “?” appended. For example, to query the programmed voltage, send the string: SOURce:VOLTage?. A subsequent device read will return a value such as “33.000”. All queries are terminated with a carriage return and line feed (0x0D 0x0A). When the power supply has nothing to report, its output buffer will contain two ASCII characters: a carriage return and linefeed (in decimal the values are: <13><10>).

9.4 **IEEE 488.2 COMMON COMMAND SUBSYSTEM**

The following commands are common to all SCPI instruments and declared mandatory by IEEE 488.2. In the following table, the power supply is defined as the “device” on the GPIB bus.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>Clears all status reporting data structures including the Status Byte, Standard Event Status Register, and Error Queue. The STAT:PROT:ENAB (protection event enable register) is cleared by this command; other enable registers are not cleared by this command.</td>
</tr>
<tr>
<td>*ESE &lt;0+NR1&gt;</td>
<td>Sets the value of the Standard Event Status Enable Register that determines which bits can be set in the Standard Event Status Register. See section 9.2.2 for valid values.</td>
</tr>
<tr>
<td>*ESE?</td>
<td>Returns the integer value of the Standard Event Status Enable Register. See section 9.2.2 for valid values.</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Returns the integer value of the Standard Event Status Register. The ESR and the Status Byte ESR bit are cleared. See section 9.2.2 for valid values.</td>
</tr>
<tr>
<td>*IDN?</td>
<td>Returns the device identification as an ASCII string.</td>
</tr>
<tr>
<td>*OPC</td>
<td>Enables the Operation Complete bit of the Standard Event Status Register to be set when all pending operations are complete. See section 9.2.2.</td>
</tr>
<tr>
<td>*RST</td>
<td>Resets the supply to its Power ON (PON) state. Clears all status reporting data structures including the Status Byte, Standard Event Status Register, and Error Queue. The STAT:PROT:ENAB (protection event enable register) is cleared by this command; other enable registers are not cleared by this command.</td>
</tr>
<tr>
<td>*SRE &lt;0+NR1&gt;</td>
<td>Sets the value of the Service Request Enable Register, which determines which bits in the Status Byte will cause a service request from the device. See section on Status Byte for valid values.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| *SRE?   | Returns the integer value of the Service Request Enable Register. See section on Status Byte for valid values. Values range from 0-63 or 128-191.  
**Response:** <0+NR1> |
| *STB?   | Returns the integer value of the Status Byte with bit 6 representing the Master Summary Status (MSS) instead of RQS. The MSS bit acts as a summary bit for the Status Byte and indicates whether the device has at least one reason to request service based on the MAV and the ESR bits. See section on Status Byte for valid values. Values range from 0-255.  
**Response:** <0+NR1> |
9.5 SOURCE SCPI COMMAND SUBSYSTEM

This section first presents a tree summary of the SOURce commands and then provides a tabular description.

9.5.1 SOURCE SCPI Command Summary

SOURce

;ANALOG

:PROGram

 :SOURce <string>
 :SOURce?

 :CURRent <NRf>
 :CURRent?

 [[:LEVel] <NRf>
 [:LEVel]?]

 [:IMMediate] <NRf>
 [:IMMediate]?

 [:AMPLitude] <NRf>

 :MODE?
 [:AMPLitude]?  
 :LIMit<NRf>
 :LIMit?

 [:AMPLitude] <NRf>
 [:AMPLitude]?

 :RAMP <NRf> <NRf>
 :RAMP?

 :ABORT

 :ALL?

 :HTRIGgered <NRf> <NRf>
 :HTRIGgered?

 :TRIGgered <NRf> <NRf>
 :TRIGgered?

 :TRIGgered

 :TRIGgered?

 :CLEar

 ::AMPLitude <NRf>
 ::AMPLitude?

 ::PROGram <string>

 ::PROGram?

 ::FSC <NRf>
 ::FSC?

 ::FSCR <NRf>
 ::FSCR?

 ::MONitor

 ::FSC <NRf>
 ::FSC?
SOURce
 :VOLTage
 :VOLTage?
 [::LEVel] <NRf>
 [::LEVel]?
 [::IMMediate] <NRf>
 [::IMMediate]?
 [::AMPLitude] <NRf>
 [::AMPLitude]?
 :LIMit < NRf>
 :LIMit?
 [::AMPLitude] < NRf>
 [::AMPLitude]?
 :PROTection < NRf>
 :PROTection?
 [::LEVel] < NRf>
 [::LEVel]?
 :TRIPped?
 :PROGram < string>
 :PROGram?
 :FSC < NRf>
 :FSC?
 :STATe?
 :CLEar
 :RAMP < NRf> < NRf>
 :RAMP?
 :ABORt
 :ALL?
 :HTRIGgered < NRf> < NRf>
 :HTRIGgered?
 :TRIGgered < NRf> < NRf>
 :TRIGgered?
 :TRIGgered < NRf>
 :TRIGgered?
 :CLEar
 :AMPLitude < NRf>
 :AMPLitude?
 :PROGram < string>
 :PROGram?
 :FSC < NRf>
 :FSC?
 :FSCR < NRf>
 :FSCR?
 :MONitor
 :FSC < NRf>
 :FSC?
SOURce
  :POWer <NRF>
  :POWer?
    [:LEVel] <NRF>
    [:LEVel?]
    [:IMMediate] <NRF>
    [:IMMediate?]
      [:AMPlitude] <NRF>
      [:AMPlItude?]
  :MAX?
  :LIMit <NRF>
  :LIMit?

  :PROGram <string>
  :PROGram?
    :FSC <NRF>
    :FSC?
    :FSCR <NRF>
    :FSCR?
  :MONitor
    :FSC <NRF>
    :FSC?

SOURce
  :DIGINP
    :DIN1?
    :DIN2?
    :DIN3?
    :DIN4?
## 9.5.2 SOURCE SCPI Command Reference

The letter “C” in the “SCPI” column means that the command syntax is SCPI compliant; an “N” in the “SCPI” column means that the command syntax is not part of the SCPI definition.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>SCPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURce:ANALOG:PROGram:SOURce &lt;string&gt;</td>
<td>Changes the source for EXTernal analog programming Mode. Valid arguments are VOLT, CURR and MA420. VOLT – Voltage source (0-10V range) CURR – Resistive load on constant 1mA source (0-10kOhm). 1mA current source is in built in power supply. MA420 – Standard 4-20mA source</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:ANALOG:PROGram:SOURce?</td>
<td>Returns the setting of External analog programming source.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent &lt;NRf&gt;</td>
<td>Sets the output current in amps (default) or in milliamps.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent?</td>
<td>Returns the output current in amps or in milliamps</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent[:LEVEL] &lt;NRf&gt;</td>
<td>Sets the output current in amps (default) or in milliamps.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent[:LEVEL]?</td>
<td>Returns the output current in amps or in milliamps.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent[:LEVEL][:IMMediate] &lt;NRf&gt;</td>
<td>Sets the output current in amps (default) or in milliamps.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent[:LEVEL][:IMMediate]?:</td>
<td>Returns the output current in amps or in milliamps</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent[:LEVEL][:IMMediate][:AMPLitude] &lt;NRf&gt;</td>
<td>Sets the output current in amps (default) or in milliamps.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent[:LEVEL][:IMMediate][:AMPLitude]?</td>
<td>Returns the output current in amps or in milliamps</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent:MODE?</td>
<td>Returns the mode of operation of the power supply. 0 - Constant voltage operation, 1 - Constant current operation and 2 - constant power operation</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:LIMit&lt;NRf&gt;</td>
<td>Sets an upper soft limit on the programmed output current for the supply. The soft limit prevents the supply from being inadvertently programmed above the soft limit, thus providing a method for protecting the load against damaging currents.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent:LIMit?</td>
<td>Returns the upper soft limit on the programmed output current for the supply.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent:LIMit[:AMPLitude] &lt;NRf&gt;</td>
<td>Sets an upper soft limit on the programmed output current for the supply.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent:LIMit[:AMPLitude]?</td>
<td>Returns the upper soft limit on the programmed output current for the supply.</td>
<td>C</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>SOURce:CURRent:RAMP &lt;NRf&gt; &lt;NRf&gt;</td>
<td>Sets the output current to ramp from the present value to the specified value (first argument) in the specified time (second argument). See Ramp Function description below.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:RAMP?</td>
<td>Returns 1 if the ramp is in progress, and 0 if the ramp is completed.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:RAMP:ABORT</td>
<td>Aborts ramping and clears trigger mode.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:RAMP:ALL?</td>
<td>Returns the ramping status.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:RAMP:HTRIGgered &lt;NRf&gt; &lt;NRf&gt;</td>
<td>Sets the value of the output current to ramp to be implemented when the hardware trigger is received.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:RAMP:HTRIGgered?</td>
<td>Returns the value of the output current to ramp to be implemented when the hardware trigger is received.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:RAMP:TRIGgered &lt;NRf&gt; &lt;NRf&gt;</td>
<td>Sets the output current to ramp from the present value to the specified value (first argument) in the specified time (second argument) upon the trigger command. See Ramp description below.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent:RAMP:TRIGgered?</td>
<td>Returns the value that the output current is to ramp to (first value) and the time that it is to ramp (second value) upon the trigger command.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent:TRIGgered &lt;NRf&gt;</td>
<td>Sets the output current to the values &lt;NRf&gt; when TRIGger:TYPe 2 or 3 is sent</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent:TRIGgered?</td>
<td>Returns the current level that will be set upon receipt of the trigger.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent:TRIGgered[:AMPLitude] &lt;NRf&gt;</td>
<td>Sets the output current to the values &lt;NRf&gt; when TRIGger:TYPe 2 or 3 is sent</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent:TRIGgered[:AMPLitude]?</td>
<td>Returns the current level that will be set upon receipt of the trigger.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent:TRIGgered:CLEar</td>
<td>Clears the value stored by the SOURce:CURRent:TRIGger:AMPLitude command.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:CURRent:PROGram &lt;string&gt;</td>
<td>Changes the Current programming mode of the supply. Valid arguments are INT/0 (Internal Digital Current programming) EXT/1 (External analog Current programming) ADD/2 (Add Internal and External Current programming values)</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:PROGram?</td>
<td>Returns the setting of Current programming mode</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:PROGram:FSC &lt;NRf&gt;</td>
<td>Sets the Full Scale voltage, at which Full scale Current will be programmed in external Current programming Mode with voltage as programming source. Valid Range is from 2 to 10V.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:PROGram:FSC?</td>
<td>Returns the Full-scale Voltage, at which Full scale Current will be programmed.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:PROGram:FSCR &lt;NRf&gt;</td>
<td>Sets the Full Scale resistance, at which Full scale Current will be programmed in external Current programming Mode with Current(Resistance) as programming source. Valid Range is from 2 to 10kOhm.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:PROGram:FSCR?</td>
<td>Returns the Full-scale Resistance, at which Full scale Current will be programmed.</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>SOURce:CURRent:MONitor:FSC &lt;NRf&gt;</td>
<td>Sets Full Scale voltage on Current monitor pin (IMON), when power supply is producing full scale output current.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:CURRent:MONitor:FSC?</td>
<td>Returns the full scale voltage set for Current monitor pin (IMON)</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage &lt;NRf&gt;</td>
<td>Sets the output voltage of the supply in volts (default) or in millivolts.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage?</td>
<td>Returns the output voltage of the supply in volts or in millivolts.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage[:LEVel] &lt;NRf&gt;</td>
<td>Sets the output voltage of the supply in volts (default) or in millivolts.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage[:LEVel]?</td>
<td>Returns the output voltage of the supply in volts or in millivolts.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage[:LEVel][:IMMediate] &lt;NRf&gt;</td>
<td>Sets the output voltage of the supply in volts (default) or in millivolts.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage[:LEVel][:IMMediate]?</td>
<td>Returns the output voltage of the supply in volts or in millivolts.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage[:LEVel][:IMMediate][:AMPLitude] &lt;NRf&gt;</td>
<td>Sets the output voltage of the supply in amps (default) or in milliamps.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage[:LEVel][:IMMediate][:AMPLitude]?</td>
<td>Returns the output voltage of the supply in amps or in milliamps.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:LIMit &lt;NRf&gt;</td>
<td>Sets the upper soft limit on the programmed output voltage. The soft limit prevents the supply from being inadvertently programmed above the soft limit, thus providing a method for protecting the load against damaging voltages.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:LIMit?</td>
<td>Returns the upper soft limit set on the programmed output voltage.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:LIMit[:AMPLitude] &lt;NRf&gt;</td>
<td>Sets the upper soft limit on the programmed output voltage.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:LIMit[:AMPLitude]?</td>
<td>Returns the upper soft limit on the programmed output voltage.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROTection &lt;NRf&gt;</td>
<td>Sets the overvoltage protection trip point in volts (default) or in millivolts.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROTection?</td>
<td>Returns the set overvoltage protection trip point in volts (default) or in millivolts.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROTection[:LEVel] &lt;NRf&gt;</td>
<td>Sets the overvoltage protection trip point in volts (default) or in millivolts.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROTection[:LEVel]?</td>
<td>Returns the set overvoltage protection trip point in volts or in millivolts.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROTection:TRIPped?</td>
<td>Returns 1 (TRIPPED) or 0 (UNTRIPPED) state of the overvoltage protection circuit.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROTection:STATe?</td>
<td>Returns the state 1 (ON) or 0 (OFF) If the overvoltage protection is enabled.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROTection:CLEar</td>
<td>Clears the overvoltage protection circuit.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROTection:PROGram&lt;string&gt;</td>
<td>Changes the Over Voltage Programming mode of the supply. Valid arguments are INT/0 (Internal Digital Over voltage programming) EXT/1 (External analog Over voltage programming)</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROTection:PROGram?</td>
<td>Returns the setting of Over voltage Programming mode</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROTection:PROGram:FSC &lt;NRf&gt;</td>
<td>Sets the Full-Scale voltage, at which Full Scale Over Voltage trip point will be programmed in</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROTection:PROGram:FSC?</td>
<td>Returns the Full-scale Voltage, at which Full scale Over voltage trip point will be programmed.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:RAMP &lt;Nrf&gt; &lt;Nrf&gt;</td>
<td>Sets the output voltage to ramp from the present value to the specified value (first argument) in the specified time (second argument). See Ramp Function Description Section 9.5.3.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:RAMP?</td>
<td>Returns 1 if the ramp is in progress, and 0 if the ramp is completed.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:RAMP:ABORt</td>
<td>Aborts ramping and clears trigger mode.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:ALL?</td>
<td>Returns the ramping status.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:RAMP:HTRIGgered &lt;Nrf&gt;&lt;Nrf&gt;</td>
<td>Sets the value of the output voltage ramp to be implemented when the hardware trigger is received.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:RAMP:HTRIGgered?</td>
<td>Returns the value of the output voltage ramp to be implemented when the hardware trigger is received.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:RAMP:TRIGgered &lt;Nrf&gt; &lt;Nrf&gt;</td>
<td>Sets the output voltage to ramp from the present value to the specified value (first argument) in the specified time (second argument) upon the trigger command. See description of the Ramp Function below.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:RAMP:TRIGgered?</td>
<td>Returns the output voltage to ramp</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:TRIGgered &lt;Nrf&gt;</td>
<td>Sets the output voltage to the values stored by sending the command TRIGger:TYPe 1 or 3.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:TRIGgered?</td>
<td>Returns the voltage level that will be set upon receipt of the trigger.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:TRIGgered:CLEAR</td>
<td>Clears the value stored by the SOURce:VOLTage:TRIGger:AMPLitude command.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:TRIGgered:[AMPLitude] &lt;Nrf&gt;</td>
<td>Sets the output voltage to the values stored by sending the command TRIGger:TYPe 1 or 3.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:TRIGgered:[AMPLitude]?</td>
<td>Returns the stored value of the output current to be set when the SOURce:VOLTage:TRIGGered command is sent.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROGram &lt;string&gt;</td>
<td>Changes the Voltage programming mode of the supply. Valid arguments are INT/0 (Internal Digital Voltage programming) EXT/1 (External analog Voltage programming) ADD/2 (Add Internal and External Voltage programming values)</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROGram?</td>
<td>Returns the setting of Voltage programming mode</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROGram:FSC &lt;Nrf&gt;</td>
<td>Sets the Full Scale voltage, at which Full scale Voltage will be programmed in external Voltage programming Mode with voltage as programming source. Valid Range is from 2 to 10V.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROGram:FSC?</td>
<td>Returns the Full-scale Voltage, at which Full scale Voltage will be programmed.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROGram:FSCR &lt;Nrf&gt;</td>
<td>Sets the Full Scale resistance, at which Full scale Voltage will be programmed in external Voltage programming Mode with</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>SOURce:VOLTage:PROGram:FSCR?</td>
<td>Returns the Full-scale Resistance, at which Full scale Voltage will be programmed.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:VOLTage:MONitor:FSC &lt;NRf&gt;</td>
<td>Sets Full Scale voltage on voltage monitor pin (VMON), when power supply is producing full scale output voltage.</td>
<td></td>
</tr>
<tr>
<td>SOURce:VOLTage:MONitor:FSC?</td>
<td>Returns the Full scale voltage set for Voltage monitor pin (VMON)</td>
<td></td>
</tr>
<tr>
<td>SOURce:POWer &lt;NRf&gt;</td>
<td>Sets the maximum power limit</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:POWer?</td>
<td>Returns the set power.</td>
<td>C</td>
</tr>
<tr>
<td>SOURce:POWer:MAXimum?</td>
<td>Returns the Maximum power that can be programmed with given hardware configuration and Input voltage conditions.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:POWer:LIMit &lt;NRf&gt;</td>
<td>Sets an upper soft limit on the programmed output power for the supply. The soft limit prevents the supply from being inadvertently programmed above the soft limit, thus providing a method for protecting the load against damaging power.</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:POWer:LIMit?</td>
<td>Returns the upper soft limit on the programmed output power for the supply.</td>
<td>N</td>
</tr>
<tr>
<td>SOUR:POWer:PROGram &lt;string&gt;</td>
<td>Changes the Power programming mode of the supply. Valid arguments are INT/0 (Internal Digital Power programming) EXT/1 (External analog Power programming) ADD/2 (Add Internal and External Power programming values)</td>
<td>N</td>
</tr>
<tr>
<td>SOUR:POWer:PROGram?</td>
<td>Returns the setting of Power programming mode</td>
<td>N</td>
</tr>
<tr>
<td>SOUR:POWer:PROGram:FSC &lt;NRf&gt;</td>
<td>Sets the Full-Scale voltage, at which Full Scale Power will be programmed in external Power Programming Mode with voltage as programming source. Valid Range is from 2 to 10V.</td>
<td>N</td>
</tr>
<tr>
<td>SOUR:POWer:PROGram:FSC?</td>
<td>Returns the Full-scale Voltage, at which Full Scale Power will be programmed.</td>
<td>N</td>
</tr>
<tr>
<td>SOUR:POWer:PROGram:FSCR &lt;NRf&gt;</td>
<td>Sets the Full-Scale resistance, at which Full Scale Power will be programmed in external Power Programming Mode with Current(Resistance) as programming source. Valid Range is from 2 to 10kOhm.</td>
<td>N</td>
</tr>
<tr>
<td>SOUR:POWer:PROGram:FSCR?</td>
<td>Returns the full-scale Resistance, at which Full Scale Power will be programmed.</td>
<td>N</td>
</tr>
<tr>
<td>SOUR:POWer:MONitor:FSC &lt;NRf&gt;</td>
<td>Sets Full Scale voltage on power monitor pin (PMON), when power supply is producing full scale output power.</td>
<td>N</td>
</tr>
<tr>
<td>SOUR:POWer:MONitor:FSC?</td>
<td>Returns the full-scale voltage set for Power monitor pin (PMON)</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:DIGINP:DIN1?</td>
<td>Returns the status of digital input 1 at the Remote Analog Programming connector</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:DIGINP:DIN2?</td>
<td>Returns the status of digital input 2 at the Remote Analog Programming connector</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>SOURce:DIGINP:DIN3?</td>
<td>Returns the status of digital input 3 at the Remote Analog Programming connector (OUT_RY_EN / DIN3)</td>
<td>N</td>
</tr>
<tr>
<td>SOURce:DIGINP:DIN4?</td>
<td>Returns the status of digital input 4 at the Remote Analog Programming connector (REV_RY_EN / DIN4)</td>
<td>N</td>
</tr>
</tbody>
</table>

### 9.5.3 RAMP FUNCTION

The ramp function allows the user to transition from one voltage or current to another linearly in a specified time period (100 ms - 99 sec with 100 ms programming resolution). A unit may ramp only voltage or current, not both at a given time.

For example, `SOUR:VOLT:RAMP:TRIG 1 1` followed by `SOUR:CURR:RAMP:TRIG 2 2` will cause the unit to ramp only the output current to 2 amps in 2 seconds upon the `TRIG:RAMP` command.

#### 9.5.3.1 VOLTAGE RAMPING TO A HIGHER VOLTAGE

Requires a programmed current of at least 20% of the full scale value. Settings less than 20% will significantly lengthen the ramp time due to charging of the large capacitance in the output section of the power supply.

#### 9.5.3.2 VOLTAGE RAMPING TO A LOWER VOLTAGE

Requires an appropriate resistive load. The discharge rate of the large capacitance in the output section of the power supply, plus other user capacitance, significantly lengthens the ramp time.

#### 9.5.3.3 CURRENT RAMPING

Requires an appropriate resistive load.
9.6 MEASURE SCPI COMMAND SUBSYSTEM

This section first presents a tree summary of the MEASure commands and then provides a tabular description.

9.6.1 MEASURE SCPI Command Summary

MEASure
  :CURRent
  :CURRent?
    :AVErage <NR1>
    :AVErage?
    :PROGram?
  :POWer?
    :PROGram?
  :VOLTage?
  :VOLTage
    :AVErage <NR1>
    :AVErage?
    :PROGram?
    :PROTection
    :PROGram?

9.6.2 MEASURE SCPI Command Reference

The letter “C” in the “SCPI” column means that the command syntax is SCPI compliant; an “N” in the “SCPI” column means that the command syntax is not part of the SCPI definition.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>SCPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASure:CURRent?</td>
<td>Returns the floating point value of the DC output current in amps.</td>
<td>C</td>
</tr>
<tr>
<td>MEASure:CURRent:AVERage &lt;NR1&gt;</td>
<td>Enter a value of 3 to 9 to set the number of readings to average together when returning the current value from the MEAS:CURR? command to reduce noise in the readback readings. The value of 3 (factory default) provides the fastest response time in the readings, but less rejection of noise.</td>
<td>N</td>
</tr>
<tr>
<td>MEASure:CURRent:AVERage?</td>
<td>Returns the number 3 to 9 to indicate the number of readings to average together when taking a current reading.</td>
<td>N</td>
</tr>
<tr>
<td>MEASure:CURRent:PROGram?</td>
<td>Returns the programmed output current from external Analog current programming feature.</td>
<td></td>
</tr>
<tr>
<td>MEASure:POWer?</td>
<td>Returns the floating point value of the measured output power in watts.</td>
<td></td>
</tr>
<tr>
<td>MEASure:PROGram?</td>
<td>Returns the programmed output power from external Analog power programming feature.</td>
<td></td>
</tr>
<tr>
<td>MEASure:VOLTage?</td>
<td>Returns the floating point value of the DC output voltage in volts.</td>
<td>C</td>
</tr>
<tr>
<td>MEASure:VOLTage:AVERage &lt;NR1&gt;</td>
<td>Enter a value of 1 to 5 to set the number of readings to average together when returning the voltage value from the MEAS:VOLT? command. This function reduces noise in the readback readings. The value of 1 (factory</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCP I</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>MEASure:VOLTage:AVERage?</td>
<td>Returns the number 1 to 5 to indicate the last set number of readings to average together when taking a voltage reading.</td>
<td>N</td>
</tr>
<tr>
<td>MEASure:VOLTage:PROGram?</td>
<td>Returns the programmed output voltage from external Analog voltage programming feature.</td>
<td></td>
</tr>
<tr>
<td>MEASure:VOLTage:PROTection :PROGram?</td>
<td>Returns the programmed Over voltage trip point from external Analog over voltage programming feature.</td>
<td></td>
</tr>
</tbody>
</table>

9.7 OUTPUT SCPI COMMAND SUBSYSTEM

This section first presents a tree summary of the OUTPut commands and then provides a tabular description.

9.7.1 OUTPUT SCPI Command Summary

```
OUTPut
  :PROTection
  :DELay <NRf>
  :DELay?
  :FOLD <0|1|2>
  :FOLD?
  :SENSe <boolean>
  :SENSe?
  :DEFault <Boolean>
  :DEFault?
  :STATe <boolean>
  :STATe?
  :TRIPPed?
  :AUX
    :5V <ON|OFF>
    :5V?
    :15V <ON|OFF>
    :15V?
  :ISOLation <Boolean>
  :ISOLation?
  :POLarity <string>
  :POLarity?
```
## 9.7.2 OUTPUT SCPI Command Reference

The letter “C” in the “SCPI” column means that the command syntax is SCPI compliant; an “N” in the “SCPI” column means that the command syntax is not part of the SCPI definition.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>SCPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPut:PROTection:DELay &lt;Nr&gt;</td>
<td>Sets the programmable time delay executed by the supply before reporting output protection conditions after a new output voltage or current is specified. Functional granularity of +/- 0.5 seconds</td>
<td>N</td>
</tr>
<tr>
<td>OUTPut:PROTection:DELay?</td>
<td>Returns the time delay to be executed by the supply.</td>
<td>N</td>
</tr>
<tr>
<td>OUTPut:PROTection:FOLD &lt;0</td>
<td>1</td>
<td>2&gt;</td>
</tr>
<tr>
<td>OUTPut:PROTection:FOLD?</td>
<td>Returns the set foldback (program down) mode of the supply. 0 = OFF; will not program down. 1 = will program down to zero upon entering constant-voltage mode or constant power mode. 2 = will program down to zero upon entering constant-current mode or constant power mode 3 = program down to zero upon entering constant-current mode or constant-voltage mode</td>
<td>N</td>
</tr>
<tr>
<td>OUTPut:PROTection:SENSe &lt;boolean&gt;</td>
<td>Sets the output voltage sense signal setting. Valid arguments are 1/REMOTE or 0/LOCAL. When REMOTE option is selected, voltage sense signal must be connected at RVS connector at the rear side of power supply.</td>
<td>N</td>
</tr>
<tr>
<td>OUTPut:PROTection:SENSe?</td>
<td>Returns the setting of the output voltage sense signal.</td>
<td>N</td>
</tr>
<tr>
<td>OUTPut:PROTection:SENSe:DEFault &lt;Boolean&gt;</td>
<td>Sets the Power ON setting for output voltage sense signal LOCAL or REMOTE. Valid arguments are 1/REMOTE or 0/LOCAL.</td>
<td>N</td>
</tr>
<tr>
<td>OUTPut:PROTection:SENSe:DEFault?</td>
<td>Returns the Power ON setting of the output voltage sense signal.</td>
<td>N</td>
</tr>
<tr>
<td>OUTPut:STATe &lt;boolean&gt;</td>
<td>Sets the output to zero or the programmed value; opens or closes the isolation relay. Valid arguments are 1/ON or 0/OFF. *RST state value is ON.</td>
<td>C</td>
</tr>
<tr>
<td>OUTPut:STATe?</td>
<td>Returns the state of the output: 1 = ON 0 = OFF</td>
<td>C</td>
</tr>
<tr>
<td>OUTPut:TRIPped?</td>
<td>Returns the integer value 1 (TRIPPED) or 0 (UNTRIPPED) state of the output.</td>
<td>N</td>
</tr>
<tr>
<td>OUTPut:AUX</td>
<td>Subsystem for controlling Auxiliary supply</td>
<td>N</td>
</tr>
</tbody>
</table>
### 9.8 SYSTEM SCPI COMMAND SUBSYSTEM

This section first presents a tree summary of the SYSTem commands and then provides a tabular description.

#### 9.8.1 SYSTEM SCPI Command Summary

SYSTem
  :ERRor?
  :LOCAL <boolean>
  :LOCAL?
  :NET
    :AUTOIP <boolean>
    :AUTOIP?
    :DESC <string>
    :DESC?
    :DHCPMODE <boolean>
    :DHCPMODE?
    :DNS <string>
    :DNS?
    :GATE <string>
    :GATE?
    :HOST <string>
    :HOST?
    :IP <string>
    :IP?
    :LANLED <boolean>
    :LANLED?
    :MAC?
    :MASK <string>
    :MASK?
    :NETBUTTON <string>
    :PORT <NRf>
    :PORT?
### 9.8.2 SYSTEM SCPI Command Reference

The letter “C” in the “SCPI” column means that the command syntax is SCPI compliant; an “N” in the “SCPI” column means that the command syntax is not part of the SCPI definition.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>SCPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTem:ERRor?</td>
<td>Queries Error Queue for next error/event entry (first in, first out). Entries contain an error number and descriptive text. A 0 return value indicates no error occurred; negative numbers are reserved by SCPI. The maximum return string length is 255 characters. The queue holds up to 10 error/entries. All entries are cleared by the &quot;CLS command.</td>
<td>C</td>
</tr>
<tr>
<td>SYSTem:LOCAL &lt;boolean&gt;</td>
<td>Forces the supply to local or remote state. &lt;ON&gt; or &lt;1&gt; sets operation to local mode. &lt;OFF&gt; or &lt;0&gt; sets the operation to remote mode.</td>
<td>N</td>
</tr>
<tr>
<td>SYSTem:LOCAL?</td>
<td>Returns ON or 1 if in local mode. Returns OFF or 0 if in remote mode.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:AUTOIP &lt;boolean&gt;</td>
<td>Sets the network Auto IP mode in the Primary configuration without affecting the Secondary configuration. 0 = disable AutoIP; 1 = enable AutoIP</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:AUTOIP?</td>
<td>Returns 1 if AutoIP is enabled in the Primary configuration. Returns 0 if AutoIP is disabled in the Primary configuration.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:DESC &lt;string&gt;</td>
<td>Set the network Description, a 36 character alphanumeric string</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:DESC?</td>
<td>Returns the network Description.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:DHCPMODE &lt;boolean&gt;</td>
<td>Sets the network DHCP Mode in the Primary configuration without affecting the Secondary configuration. 0 = disable DHCP; 1 = enable DHCP</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:DHCPMODE?</td>
<td>Returns 1 if DHCP Mode is enabled in the Primary configuration. Returns 0 if DHCP mode is disabled in the Primary configuration.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:DNS &lt;string&gt;</td>
<td>Sets the network DNS IP address for the device. String is in the format &quot;NNN.NNN.NNN.NNN&quot; where “NNN” = 0 through 255, inclusive.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:DNS?</td>
<td>Returns the network DNS address for the device.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:GATE &lt;string&gt;</td>
<td>Sets the network gateway IP address for the device. String is in the format &quot;NNN.NNN.NNN.NNN&quot; where “NNN” = 0 through 255, inclusive.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:GATE?</td>
<td>Returns the network gateway IP address for the device.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:HOST &lt;string&gt;</td>
<td>Set the network Host Name, a 15-character (maximum) alphanumeric string. (Must be limited to 15 characters for LXI compliance)</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:HOST?</td>
<td>Returns the network Host Name</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:IP &lt;string&gt;</td>
<td>Sets the Primary configuration to STATICIP mode and sets the network IP address for the device. String is in the format &quot;NNN.NNN.NNN.NNN&quot; where “NNN” = 0 through 255, inclusive.</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>SYST:NET:IP?</td>
<td>Returns two IP addresses: the first is the IP address set to be used when the system boots up; the second is the IP address presently in use by the power supply. (The first address will either be 0.0.0.0. if the Primary configuration is DHCP or DHCP+AUTOIP, or it will be the static IP last specified).</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:LANLED:BLINK</td>
<td>ON changes front panel screen to device identify. Refer to Figure 6-11. OFF changes to dashboard screen.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:MASK &lt;string&gt;</td>
<td>Set the network Subnet Mask for the device. String is in the format “NNN.NNN.NNN.NNN” where “NNN” = 0 through 255, inclusive.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:MASK?</td>
<td>Returns the network Subnet Mask for the device.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:NETBUTTON &lt;string&gt;</td>
<td>Returns configuration parameters to factory default. (Software equivalent of pressing the Reset switch on the rear panel of the power supply). You must cycle the power to effect the change. The access string is “6867.”</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:PORT &lt;NRf&gt;</td>
<td>Set the network TCP/IP socket listening port. Valid values are 1025 to 65535.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:PORT?</td>
<td>Returns the network TCP/IP socket listening port.</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:TERM &lt;NRf&gt;</td>
<td>Sets the incoming string termination character to be used by the device. Factory set to 3. The valid range is 1-4. Values indicate the following terminator(s): 1 = 0x0d only (CR), 2 = 0x0a only (LF), 3 = 0x0d 0x0a (CR LF), 4 = 0x0a 0x0d (LF CR)</td>
<td>N</td>
</tr>
<tr>
<td>SYST:NET:TERM?</td>
<td>Returns the string terminators to be used by the device.</td>
<td>N</td>
</tr>
</tbody>
</table>
9.9  **HTRIGGER SCPI COMMAND SUBSYSTEM**

The HTRIGGER function allows the user to apply an External User Interface input signal to initiate a sequence or a voltage or current ramp. Once a hardware trigger is run, Arm goes to 0 (not armed); however, the last loaded sequence remains in memory.

9.9.1  **HTRIGGER SCPI Command Summary**

**HTRIGger**

:ABORt

9.9.2  **HTRIGGER SCPI Command Reference**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>SCPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTRIGger:ABORt</td>
<td>Stops the execution of a currently running hardware trigger function. In addition:</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>For Ramp: Clears all settings of voltage and current.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Sequence: Sets the Arm function to 0 (not armed).</td>
<td></td>
</tr>
</tbody>
</table>

9.10  **TRIGGER SCPI COMMAND SUBSYSTEM**

This section describes the programming soft trigger function.

9.10.1  **TRIGGER SCPI Command Summary**

**TRIGger**

:ABORt

:RAMP

:TYPE <1|2|3>

9.10.2  **TRIGGER SCPI Command Reference**

The letter “C” in the “SCPI” column means that the command syntax is SCPI compliant; an “N” in the “SCPI” column means that the command syntax is not part of the SCPI definition.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>SCPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:ABORt</td>
<td>Stops the execution of a currently running trigger function, and clears all settings of voltage and current.</td>
<td>N</td>
</tr>
<tr>
<td>TRIGger:RAMP</td>
<td>Executes voltage or current ramping function previously programmed by the SOURce command, i.e., SOURce:VOLTage:RAMP:TRIG SOURce:CURRent:RAMP:TRIG</td>
<td>N</td>
</tr>
<tr>
<td>TRIGger:TYPE &lt;1</td>
<td>2</td>
<td>3&gt;</td>
</tr>
</tbody>
</table>
## 9.11 CALIBRATION SCPI COMMAND SUBSYSTEM

*Note: See section 10 for calibration procedures.*

---

**CAUTION**

Please refer to the power supply manual for further information before performing calibration procedures. Calibration must be performed by qualified personnel who appropriately deal with attendant hazards. If calibration is not performed properly, functional problems could arise, requiring that the supply be returned to the factory.

---

### 9.11.1 CALIBRATION SCPI Command Summary

**CALibrate**

:INITial

:CURRent <NRf>

:CURRent?

:LIMit <NRf>

:LIMit?

:PROGram <string>

:PROGram?

:FSC <NRf>

:FSC?

:FSCR <NRf>

:FSCR?

:MONitor

:FSC <NRf>

:FSC?

:VOLTage <NRf>

:VOLTage?

[:AMPLitude] <NRf>

[:AMPLitude?]
CALibrate
  :INITial
  :POWer <Nrf>
  :POWer?
  :LIMit <Nrf>
  :LIMit?
  :PROGram <string>
  :PROGram?
  :FSC <Nrf>
  :FSC?
  :FSCR <Nrf>
  :FSCR?
  :MONitor
  :FSC <Nrf>
  :FSC?
  :MEASure:CURRent:AVERage <NR1>
  :MEASure:CURRent:AVERage?
  :MEASure:VOLTage:AVERage <NR1>
  :MEASure:VOLTage:AVERage?
  :OUTPut:PROTection:FOLD <NR1>
  :OUTPut:PROTection:FOLD?

CALibrate
  :MEASure
    :CURRent
      :CALCulate
      :GAIN <Nrf>
      :GAIN?
      :OFFSet <Nrf>
      :OFFSet?
    :VOLTage
      :CALCulate
      :GAIN <Nrf>
      :GAIN?
      :OFFSet <Nrf>
      :OFFSet?
  :MODel
    :LASTCALDATE <string>
    :LASTCALDATE?
    :NEXTCALDATE <string>
    :NEXTCALDATE?
    :POWERON <string>
    :POWERON?
    :RESET <string>
    :RESET?
9.11.2 **CALIBRATION SCPI Command Reference**

The letter “C” in the “SCPI” column means that the command syntax is SCPI compliant; an “N” in the “SCPI” column means that the command syntax is not part of the SCPI definition.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>SCPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALibrate:INITial</td>
<td>This command subsection is used to store next power up values or initialize calibration in specified cases</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent &lt;NRf&gt;</td>
<td>Sets the power-on default value of current.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent?</td>
<td>Returns the default value of power-on current.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent:LIMit &lt;NRf&gt;</td>
<td>Sets the power-on default value of current limit.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent:LIMit?</td>
<td>Returns the default value of power-on current limit.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent:PROGram &lt;string&gt;</td>
<td>Sets the power-on default setting for output current programming. Valid arguments - INT, EXT or ADD</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent:PROGram:FSC &lt;NRf&gt;</td>
<td>Sets the power-on default voltage value for full scale current from external analog programming.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent:PROGram:FSC?</td>
<td>Returns the power-on default full scale voltage value.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent:PROGram:FSCR &lt;NRf&gt;</td>
<td>Sets the power-on default resistance value for full scale current from external analog programming.</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent:PROGram:FSCR?</td>
<td>Returns the power-on default full scale resistance value.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent:PROGram?</td>
<td>Returns the default setting of power-on output current programming.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent:MONitor</td>
<td>Initializes the current monitor (IMON) signal calibration</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent:MONitor:FSC &lt;NRf&gt;</td>
<td>Sets the power-on default voltage on IMON signal for full scale output current.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:CURRent:MONitor:FSC?</td>
<td>Returns the power-on default full scale voltage value on IMON signal.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage &lt;NRf&gt;</td>
<td>Sets the power-on default voltage.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage?</td>
<td>Returns the power-on default voltage.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage [:AMPLitude] &lt;NRf&gt;</td>
<td>Sets the power-on default voltage.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage [:AMPLitude]?</td>
<td>Returns the power-on default voltage.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:PROTection &lt;NRf&gt;</td>
<td>Sets the power-on default value of the overvoltage protection.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:PROTection?</td>
<td>Returns the default value of the power-on overvoltage protection.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:LIMit &lt;NRf&gt;</td>
<td>Sets the power-on default value of voltage limit.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:LIMit?</td>
<td>Returns the default value of power-on current limit.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:PROGram?</td>
<td>Returns the default setting of power-on output voltage programming.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:PROGram</td>
<td>Program subsystem</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:PROGram:SOURc e &lt;string&gt;</td>
<td>Sets the power-on default source for external analog programming for Voltage Current and Power. Valid arguments- VOLT, CURR or MA420</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:PROGram:SOURc e?</td>
<td>Returns the default power-on source for external analog programming.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:PROGram:FSC &lt;NRf&gt;</td>
<td>Sets the power-on default voltage value for full scale voltage from external analog programming.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:PROGram:FSC?</td>
<td>Returns the power-on default full scale voltage value.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:PROGram:FSCR &lt;NRf&gt;</td>
<td>Sets the power-on default resistance value for full scale voltage from external analog programming.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:PROGram:FSCR?</td>
<td>Returns the power-on default full scale resistance value.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:MONitor</td>
<td>Initializes the voltage monitor (VMON) signal calibration</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:MONitor:FSC &lt;NRf&gt;</td>
<td>Sets the power-on default voltage on VMON signal for full scale output voltage.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:VOLTage:MONitor:FSC?</td>
<td>Returns the power-on default full scale voltage value on VMON signal.</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer &lt;NRf&gt;</td>
<td>Sets the power-on default value of power.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer?</td>
<td>Returns the default value of power-on power.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer:LIMit &lt;NRf&gt;</td>
<td>Sets the power-on default value of power limit.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer:LIMit?</td>
<td>Returns the default value of power-on power limit.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer:PROGram &lt;string&gt;</td>
<td>Sets the power-on default setting for output power programming. Valid arguments - INT, EXT or ADD</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer:PROGram?</td>
<td>Returns the default setting of power-on output power programming.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer:PROGram:FSC &lt;NRf&gt;</td>
<td>Sets the power-on default voltage value for full scale power from external analog programming.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer:PROGram:FSC?</td>
<td>Returns the power-on default full scale voltage value.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer:PROGram:FSCR &lt;NRf&gt;</td>
<td>Sets the power-on default resistance value for full scale power from external analog programming.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer:PROGram:FSCR?</td>
<td>Returns the power-on default full scale resistance value.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer:MONitor</td>
<td>Initializes the power monitor (PMON) signal calibration</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer:MONitor:FSC &lt;NRf&gt;</td>
<td>Sets the power-on default voltage on PMON signal for full scale output power.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:POWer:MONitor:FSC?</td>
<td>Returns the power-on default full scale voltage value on PMON signal.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:MEASure:CURRent:AVErage &lt;NR1&gt;</td>
<td>Sets the number of readings to average together when returning the current value with the MEAS:CURR? command to reduce noise in the readback readings. Enter a value of 3 to 9, with the value of 3 (factory default) providing the fastest response time in the readings, but less rejection of noise.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:MEASure:CURRent:AVErage?</td>
<td>Returns the number 3 to 9 to indicate the number of readings to average together when taking a current reading.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:MEASure:VOLTage:AVErage &lt;NR1&gt;</td>
<td>Sets the number of readings to average together when returning the voltage value with the MEAS:VOLT? command to reduce noise in the readback readings. Enter a value of 1 to 10, with the value of 1 (factory default) providing the fastest response time in the readings, but less rejection of noise.</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>CALibrate:INITial:MEASure:VOLTage:AVERage?</td>
<td>Returns the number 1 to 10 to indicate the number of readings to average together when taking a current reading.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:OUTPut:PROTection:FOLD &lt;NR1&gt;</td>
<td>Sets the power-on default foldback protection setting. Valid arguments are same as for OUTP:PROT:FOLD</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:INITial:OUTPut:PROTection:FOLD?</td>
<td>Returns the power-on default setting of foldback protection</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure</td>
<td>Calibrate Measure subsystem</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:CURRENT</td>
<td>Calibrate Measure Current subsystem</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:CURRENT:CALCulate</td>
<td>Calculates the value of the gain and offset for current measurements.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:CURRENT:GAIN &lt;NRf&gt;</td>
<td>Sets the value of the gain for current measurements.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:CURRENT:GAIN?</td>
<td>Returns the value of the gain for current measurements.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:CURRENT:OFFSET &lt;NRf&gt;</td>
<td>Sets the value of the offset for current measurements.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:CURRENT:OFFSET?</td>
<td>Returns the value of the offset for current measurements.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:VOLTage</td>
<td>Calibrate Measure Voltage subsystem</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:VOLTage:CALCulate</td>
<td>Calculates the value of the gain and offset for voltage measurements.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:VOLTage:GAIN &lt;NRf&gt;</td>
<td>Sets the value of the gain for voltage measurements.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:VOLTage:GAIN?</td>
<td>Returns the value of the gain for voltage measurements.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:VOLTage:OFFSET &lt;NRf&gt;</td>
<td>Sets the value of the offset for voltage measurements.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MEASure:VOLTage:OFFSET?</td>
<td>Returns the value of the offset for the voltage measurements.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MODel</td>
<td>Calibrate Model subsystem</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MODel:LASTCALDATE&lt;string&gt;</td>
<td>Sets the date last calibrated; format: MM DD YYYY (space after MM and DD required)</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MODel:LASTCALDATE?</td>
<td>Returns the date last calibrated.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MODel:NEXTCALDATE&lt;string&gt;</td>
<td>Sets the date next calibration is required; format: MM DD YYYY (space after MM and DD required)</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MODel:NEXTCALDATE?</td>
<td>Returns the date next calibration is required.</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>CALibrate:MOdel:POWERON &lt;string&gt;</td>
<td>Sets the default output enable condition at power on. Input format: “ON,INIT” enables the output at next power on “OFF,INIT” disables the output at next power on NOTE: Quotation marks are required in the command string.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MOdel:POWERON?</td>
<td>Returns the status of the output enable condition at power on</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MOdel:RESET &lt;string&gt;</td>
<td>Sets the default output enable condition when the *RST command is issued. Input format: “ON,INIT” enables the default output “OFF,INIT” disables the default output NOTE: Quotation marks are required in the command string.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:MOdel:RESET?</td>
<td>Returns the status of the default output enable condition when the *RST command is issued</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut</td>
<td>Calibrate Output subsystem</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent</td>
<td>Calibrate Output Current subsystem</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:CALCulate</td>
<td>Calculates the value of the gain and offset for output current.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:DAC &lt;NR1&gt;</td>
<td>Sets the output of the output current D/A converter.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:FIVEPOINT &lt;1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:FIVEPOINT?</td>
<td>Returns the entered values for 5-point calibration.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:GAIN &lt;NRf&gt;</td>
<td>Sets the value of the gain for the output current.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:GAIN?</td>
<td>Returns the value of the gain for the output current.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:OFFSet &lt;NRf&gt;</td>
<td>Sets the value of the offset for the output current.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:OFFSet?</td>
<td>Returns the value of the offset for the output current.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:EXTV:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for current programming from external voltage source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:EXTV:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for current programming from external voltage source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:EXTI:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for current programming from external resistance source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:EXTI:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for current programming from external resistance source</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:EXT420MA:OFFSE T &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for current programming from external 4-20mA source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:EXT420MA:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for current programming from external 4-20mA source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:MON:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for current monitor signal</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:CURRent:MON:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for current monitor signal</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage</td>
<td>Calibrate Output Voltage subsystem</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:CALCulate</td>
<td>Calculates the value of the gain and offset for output voltage.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:DAC &lt;NR1&gt;</td>
<td>Sets the output of the output voltage D/A converter.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:FIVEPOINT&lt;1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:FIVEPOINT?</td>
<td>Returns the entered values for 5-point calibration.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:GAIN &lt;NRf&gt;</td>
<td>Sets the value of the gain for the output voltage.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:GAIN?</td>
<td>Returns the value of the gain for the output voltage.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:OFFSET &lt;NRf&gt;</td>
<td>Sets the value of the offset for the output voltage.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:OFFSET?</td>
<td>Returns the value of the offset for the output voltage.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:EXTV:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for voltage programming from external voltage source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:EXTV:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for voltage programming from external voltage source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:EXTI:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for voltage programming from external resistance source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:EXTI:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for voltage programming from external resistance source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:EXT420MA:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for voltage programming from external 4-20mA source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:EXT420MA:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for voltage programming from external 4-20mA source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:MON:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for voltage monitor signal</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:MON:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for voltage monitor signal</td>
<td>N</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>SCPI</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>CALibrate:OUTPut:VOLTage:PROTecHon:DAC &lt;NR1&gt;</td>
<td>Sets the output of the output overvoltage protection D/A converter.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:POWer:EXTV:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for power programming from external voltage source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:POWer:EXTV:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for power programming from external voltage source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:POWer:EXTI:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for power programming from external resistance source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:POWer:EXTI:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for power programming from external resistance source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:POWer:EXT420MA:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for power programming from external 4-20mA source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:POWer:EXT420MA:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for power programming from external 4-20mA source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:POWer:MON:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for power monitor signal</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:POWer:MON:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for power monitor signal</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:OVERVOLT:EXTV:OFFSET &lt;NRf&gt;</td>
<td>Sets the calibration Offset point for Over-voltage programming from external voltage source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:OUTPut:OVERVOLT:EXTV:FSC &lt;NRf&gt;</td>
<td>Sets the calibration full-scale point for Over-voltage programming from external voltage source</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:UNLock &lt;string&gt;</td>
<td>Sets the non-volatile memory available to store calibration constants. The access string is “6867”.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:STORe</td>
<td>Stores the calibration constants in non-volatile memory.</td>
<td>N</td>
</tr>
<tr>
<td>CALibrate:LOCK</td>
<td>Disables access to the non-volatile memory. Prevents attempts to store calibration values. (Issue after CAL:UNLock and CAL:STORe commands)</td>
<td>N</td>
</tr>
</tbody>
</table>
9.13 STATUS SCPI COMMAND SUBSYSTEM

This section first presents a tree summary of the STATus commands and then provides a tabular description.

Note: See Section 5 for further information.

9.13.1 STATUS SCPI Command Summary

STATus

:PROTection

:CONDition?

:ENABLE <NR1>

:ENABLE?

:EVENt?

9.13.2 STATUS SCPI Command Reference

The letter "C" in the "SCPI" column means that the command syntax is SCPI compliant; an "N" in the "SCPI" column means that the command syntax is not part of the SCPI definition.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>SCPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATus:PROTection</td>
<td>Status Protection subsystem.</td>
<td>C</td>
</tr>
<tr>
<td>STATus:PROTection:CONDition?</td>
<td>Returns the integer value of the Protection Condition Register. Used to read the status of the power hardware. See section 9.2.1 for a detailed table of the various bits that make up this register.</td>
<td>C</td>
</tr>
<tr>
<td>STATus:PROTection:ENABLE &lt;NR1&gt;</td>
<td>Sets the enable mask of the Protection Event Register, which allows true conditions to be reported in the summary bit of the Protection Condition Register.</td>
<td>C</td>
</tr>
<tr>
<td>STATus:PROTection:ENABLE?</td>
<td>Returns the value of the current mask of the Protection Event Register.</td>
<td>C</td>
</tr>
<tr>
<td>STATus:PROTection:EVENt?</td>
<td>Returns the integer value of the Protection Event Register.</td>
<td>C</td>
</tr>
</tbody>
</table>

9.14 EXAMPLES OF USING THE SCPI COMMANDS

The following examples demonstrate programming a power supply to control and to readback the output using the SCPI commands. The maximum voltage and current output is dependent on the particular model. The examples list only the SCPI commands; the code required to send the commands is dependent on the type of language you are using (e.g., C or BASIC) and GPIB hardware (e.g., National Instruments).

9.14.1 VI Mode Example

Program a unit with no load at the output to 5 VDC @ 1A and verify the output.

// Use SYST:ERR? after each command to verify no programming errors.
// turn on the unit.
*CLS // clear the unit to its power-on default settings.
*RST // reset the unit.
SOUR:CURR 1.0  // program output current to 1.0 A.
SOUR:CURR?  // confirm the output current setting (response: 1.0).
SOUR:VOLT 5.0  // program output voltage to 5.0 VDC.
SOUR:VOLT?  // confirm the output voltage setting (response: 5.0).
MEAS:CURR?  // measure the actual output current (response: ~ 0.0 with no load on output).
MEAS:VOLT?  // measure the actual output voltage (response: ~ 5.0).

9.14.2 OVP Setup Example

Program a unit with no load at the output to generate a GPIB service request upon an overvoltage protection trip condition. (Must use GPIB not RS232.)

// Use SYST:ERR? after each command to verify no programming errors.
// assure that PON is not selected on the rear panel switch.
// Turn on the unit.
*CLS  // clear the unit to its power-on default settings.
*RST  // reset the unit.
SOUR:VOLT:PROT 4.0  // program the OVP trip point to 4.0 VDC.
SOUR:VOLT:PROT?  // confirm the OVP trip point setting (response: 4.0).
SOUR:CURR 1.0  // program output current to 1.0 A.
SOUR:VOLT 3.0  // program output voltage to 3.0 VDC.
CAL1:UNLOCK “6867”  // Unlock overvoltage simulation.
*SRE 2  // enable the GPIB service request upon a fault.
*SRE?  // confirm the GPIB service request enabled (response 2).
STAT:PROT:EVENT?  // confirm no faults occurred (response: 0).
// confirm that the OVP led and SRQ led is not active.
SOUR:VOLT 4.0  // program output voltage to 4.0 VDC - cause OVP trip!
// confirm that unit issued a GPIB service request (use a serial poll).
9.14.3 Trigger Example

Program a unit with no load at the output to change its output voltage and current to 5 VDC @ 1A at the same time.

// Use SYST:ERR? after each command to verify no programming errors.
// turn on the unit.
*CLS  // clear the unit to its power-on default settings.
*RST  // reset the unit.
SOUR:Curr:TRIG 1.0  // program output current to 1.0 A upon trigger.
SOUR:Curr:TRIG?  // confirm output current set to 1.0 A upon trigger.
SOUR:VOLT:TRIG 5.0  // program output voltage to 5.0 VDC upon trigger
SOUR:VOLT:TRIG?  // confirm output current set to 5.0 VDC upon trigger.
MEAS:CURR?  // measure the actual output current (response: 0.0).
MEAS:VOLT?  // measure the actual output voltage (response: 0.0).
TRIG:TYPE 3  // trigger the unit to implement curr and volt programming.
MEAS:CURR?  // measure the actual output current (response: ~ 0.0 with no load on output).
MEAS:VOLT?  // measure the actual output voltage (response: ~ 5.0).
TRIG:ABORT  // turn off trigger mode.

9.14.4 Ramp I Example

Program a unit with the output shorted to ramp its output current from 5A to 25A in 30 seconds.

// Use SYST:ERR? after each command to verify no programming errors.
// turn on with no load at the output.
*CLS  // clear the unit to its power-on default settings.
*RST  // reset the unit.
SOUR:VOLT 33.0  // program output voltage to 33.0 VDC.
SOUR:Curr 5.0  // program output current to 5.0 A.
SOUR:Curr:RAMP 25.0 30.0  // program current to ramp from the present value (5.0 A) to 25.0 A in 30 seconds.
9.14.5 **Ramp V Example 2**

Program a unit with no load at the output, to ramp its output voltage from 5 VDC to 25 VDC in 30 seconds upon the trigger command.

// Use `SYST:ERR?` after each command to verify no programming errors.
// turn on the unit.
*CLS // clear the unit to its power-on default settings.
*RST // reset the unit.
SOUR:CURR 33.0 // program output current to 33.0 A.
SOUR:VOLT 5.0 // program output voltage to 5.0 VDC.
SOUR:VOLT:RAMP:TRIG 25.0 30.0 // program voltage to ramp from the present // value (5.0 VDC) to 25.0 VDC in 30 secs. // upon the trigger command.
TRIG:RAMP // start ramp execution.
TRIG:ABORT // turn off trigger mode.

9.14.6 **Power On INIT Example**

Program a unit to power-on and initialize to 2 VDC @ 1A with an overvoltage protection level of 3 VDC. Verify proper power-on initialization.

// Use `SYST:ERR?` after each command to verify no programming errors.
// turn on the unit.
*CLS // clear the unit to its power on default settings.
*RST // reset the unit.
CAL:INIT:CURR 1.0 // set power-on initial current to 1.0 A.
CAL:INIT:CURR? // confirm power-on initial current setting.
CAL:INIT:VOLT 2.0 // set power-on initial voltage to 2.0 VDC.
CAL:INIT:VOLT? // confirm power-on initial voltage setting.
CAL:INIT:VOLT:PROT 3.0 // set power-on initial overvoltage protection to 3.0 VDC.
CAL:INIT:VOLT:PROT? // confirm power-on initial overvoltage protection setting.
// cycle power to the unit.
// note voltage is initialized to 2.0 VDC via front panel.
SOUR:CURR? // confirm power-on initial current setting.
SOUR:VOLT? // confirm power-on initial voltage setting.
SOUR:VOLT:PROT? // confirm power-on initial overvoltage protection setting.
10

CALIBRATION

CAUTION
Please refer to the power supply operation manual for further information before performing calibration procedures. Only qualified personnel who deal with attendant hazards in power supplies, are allowed to perform calibration procedures. If calibration is not performed properly, functional problems could arise, requiring that the supply be returned to the factory.

10.1 INTRODUCTION

The Asterion DC Power Supply is calibrated to adjust internal signal levels to correspond to the expected supply output signal levels. You must perform the calibration procedures if the power supply's programming or readback performance falls out of specification due to component aging drifts. Refer to your power supply operation manual to find the required calibration interval. The Asterion DC Power Supply is calibrated for output voltage programming and output current programming.

The calibration procedures in the following sections are designed to be performed at ambient temperature of 25°C ± 5°C, after the unit has had a stable output and a stable load for at least 30 minutes.

The following test equipment is required in addition to the computer system to complete the following calibration:

- Model HP 344401A or equivalent 6-digit digital voltmeter (DVM)
- Current shunt rated for an accuracy of 0.05% or better and a minimum of 125% of the UUT full scale output current

**NOTE:** All calibration procedures steps should be performed. Omitting any step or applicable section may affect the specified performance of the unit.

The CAL:MOD:LASTCALDATE and CAL:MOD:NEXTCALDATE commands (Section 9.11) should be issued once calibration procedures have been performed.
10.2 SETUP FOR CALIBRATION

This section provides calibration setup for RS232, Ethernet.

**STEP DESCRIPTION**

1. Disconnect the Unit Under Test (UUT) AC input power. (The UUT is the power supply that will be calibrated.)
2. Disconnect all loads from the UUT's output terminals.
3. Connect the DVM to the UUT output terminals.
4. Perform one of the following:
   - **For RS232:** Connect the RS232 controller to the rear panel of the UUT using the RS232 null modem cable (see Figure 4-3).
   - **For Ethernet:** Refer to Section 6 for Ethernet communication setup. Connect the RJ-45 Ethernet cable to the rear panel of the UUT.
5. Reconnect the AC input power. Turn the unit ON and allow the unit to warm up for at least 30 minutes.

The UUT is ready for the calibration procedure to be performed.

---

**WARNING**

Exercise caution when using and servicing power supplies:

- High energy levels can be present at the output terminals on all power supplies in normal operation.
- Potentially lethal voltages exist within the power supply and on the output terminals of power supplies that are rated at 40V and over.
- Filter capacitors store potentially dangerous energy for some time after power is removed.

---

10.3 VOLTAGE PROGRAMMING CALIBRATION

**STEP DESCRIPTION**

1. Issue a *CLS command.
2. Issue a *RST command.
3. Program the overvoltage protection to maximum to prevent nuisance trips:
   
   \[ \text{CAL:OUTP:VOLT:PROT:DAC 65535} \]
4. Program the output current to full scale to prevent Constant-Current operation:
5. Set the output voltage sensing to "Local"

OUTP:SENS LOCAL

6. Program the output of the first calibration point by sending the following command string from the computer:

CAL:OUTP:VOLT:DAC 3275

7. Let the output settle and measure the voltage with a high precision voltmeter; this is value 1.

8. Enter the actual output voltage value of the first calibration point:

CAL:OUTP:VOLT:FIVEPOINT 1 <value 1>

9. Program the output of the second calibration point by sending the following command string from the computer:

CAL:OUTP:VOLT:DAC 19000

10. Let the output settle and measure the voltage with a high precision voltmeter; this is value 2.

11. Enter the actual output voltage value of the second calibration point:

CAL:OUTP:VOLT:FIVEPOINT 2 <value 2>

12. Program the output of the third calibration point by sending the following command string from the computer:

CAL:OUTP:VOLT:DAC 32000

13. Let the output settle and measure the voltage with a high precision voltmeter; this is value 3.

14. Enter the actual output voltage value of the third calibration point:

CAL:OUTP:VOLT:FIVEPOINT 3 <value 3>

15. Program the output of the fourth calibration point by sending the following command string from the computer:
CAL:OUTP:VOLT:DAC 45000

16. Let the output settle and measure the voltage with a high precision voltmeter; this is value 4.

17. Enter the actual output voltage value of the fourth calibration point:
   CAL:OUTP:VOLT:FIVEPOINT 4 <value 4>

18. Program the output of the fifth calibration point by sending the following command string from the computer:
   CAL:OUTP:VOLT:DAC 62250

19. Let the output settle and measure the voltage with a high precision voltmeter; this is value 5.

20. Enter the actual output voltage value of the fifth calibration point:
   CAL:OUTP:VOLT:FIVEPOINT 5 <value 5>

21. To review entered data for five–point voltage calibration, issue the following query:
   CAL:OUTP:VOLT:FIVEPOINT?

22. Send the command to calculate the calibration coefficients by the processor.
   CAL:OUTP:VOLT:CALC

23. Program the supply to unlock the non-volatile memory for calibration value storage:
   CAL:UNLOCK “6867”

24. Program the supply to store the calibration values in non-volatile memory:
   CAL:STORE

   Allow 15 seconds for the non-volatile memory to be updated with the new calibration values.

25. Program the supply to lock the non-volatile memory for calibration value protection.
   CAL:LOCK
10.4 VOLTAGE PROGRAMMING CALIBRATION – REMOTE SENSE

Preparation:
1. Power down the Unit Under Test (UUT) and remove the input power for safety.
2. Connect output terminals to the RVS connector on the rear side of the power supply. Connect positive terminal to positive of RVS connector and negative terminal to negative of RVS connector.
3. Connect the DVM to the UUT output terminals.
4. Apply input power and power up the UUT.
5. After the UUT has initialized, begin the calibration procedure.

STEP DESCRIPTION
1. Issue a *CLS command.
2. Issue a *RST command.
3. Program the overvoltage protection to maximum to prevent nuisance trips:
   \[ \text{CAL:OUTP:VOLT:PROT:DAC 65535} \]
4. Program the output current to full scale to prevent Constant-Current operation:
   \[ \text{CAL:OUTP:CURR:DAC 65535} \]
5. Set the output voltage sensing to “Remote”
   \[ \text{OUTP:SENS REMOTE} \]
6. Program the output of the first calibration point by sending the following command string from the computer:
   \[ \text{CAL:OUTP:VOLT:DAC 3275} \]
7. Let the output settle and measure the voltage with a high precision voltmeter; this is value 1.
8. Enter the actual output voltage value of the first calibration point:
   \[ \text{CAL:OUTP:VOLT:FIVEPOINT 1 <value 1>} \]
9. Program the output of the second calibration point by sending the following command string from the computer:
10. Let the output settle and measure the voltage with a high precision voltmeter; this is value 2.

11. Enter the actual output voltage value of the second calibration point:
   
   \texttt{CAL:OUTP:VOLT:FIVEPOINT 2 <value 2>}

12. Program the output of the third calibration point by sending the following command string from the computer:
   
   \texttt{CAL:OUTP:VOLT:DAC 32000}

13. Let the output settle and measure the voltage with a high precision voltmeter; this is value 3.

14. Enter the actual output voltage value of the third calibration point:
   
   \texttt{CAL:OUTP:VOLT:FIVEPOINT 3 <value 3>}

15. Program the output of the fourth calibration point by sending the following command string from the computer:
   
   \texttt{CAL:OUTP:VOLT:DAC 45000}

16. Let the output settle and measure the voltage with a high precision voltmeter; this is value 4.

17. Enter the actual output voltage value of the fourth calibration point:
   
   \texttt{CAL:OUTP:VOLT:FIVEPOINT 4 <value 4>}

18. Program the output of the fifth calibration point by sending the following command string from the computer:
   
   \texttt{CAL:OUTP:VOLT:DAC 62250}

19. Let the output settle and measure the voltage with a high precision voltmeter; this is value 5.

20. Enter the actual output voltage value of the fifth calibration point:
   
   \texttt{CAL:OUTP:VOLT:FIVEPOINT 5 <value 5>}

21. To review entered data for five–point voltage calibration, issue the following query:
CAL:OUTP:VOLT:FIVEPOINT?

22. Send the command to calculate the calibration coefficients by the processor.
   CAL:OUTP:VOLT:CALC

23. Program the supply to unlock the non-volatile memory for calibration value storage:
   CAL:UNLOCK "6867"

24. Program the supply to store the calibration values in non-volatile memory:
   CAL:STORE

   *Allow 15 seconds for the non-volatile memory to be updated with the new calibration values.*

25. Program the supply to lock the non-volatile memory for calibration value protection.
   CAL:LOCK

### 10.5 CURRENT PROGRAMMING CALIBRATION

**Preparation:**

1. Power down the Unit Under Test (UUT) and remove the input power for safety.
2. Allow 5 minutes for the energy in the output to bleed down to a safe level.
3. Attach the precision shunt between the power supply’s output terminals.
4. Attach the voltmeter across the shunt.
5. Apply input power and power up the UUT.
6. After the UUT has initialized, begin the calibration procedure.

**STEP** | **DESCRIPTION**
--- | ---
1. | Issue a *CLS command.
2. | Issue a *RST command.
3. | Program the overvoltage protection to maximum to prevent nuisance trips:
   
   ```
   CAL:OUTP:VOLT:PROT:DAC 65535
   ```
4. | Program the output voltage to full scale to prevent Constant-Voltage operation:
   
   ```
   CAL:OUTP:VOLT:DAC 65535
   ```
5. Program the output of the first calibration point by sending the following command string from the computer:

   CAL:OUTP:CURR:DAC 3275

6. Let the output settle and measure the output current with the current shunt and the high precision voltmeter; this is value 1.

7. Enter the actual output current of the first calibration point:

   CAL:OUTP:CURR:FIVEPOINT 1 <value 1>

8. Program the output of the second calibration point by sending the following command string from the computer:

   CAL:OUTP:CURR:DAC 19000

9. Let the output settle and measure the output current with the current shunt and the high precision voltmeter; this is value 2.

10. Enter the actual output current of the second calibration point:

    CAL:OUTP:CURR:FIVEPOINT 2 <value 2>

11. Program the output of the third calibration point by sending the following command string from the computer:

    CAL:OUTP:CURR:DAC 32000

12. Let the output settle and measure the output current with the current shunt and the high precision voltmeter; this is value 3.

13. Enter the actual output current of the third calibration point:

    CAL:OUTP:CURR:FIVEPOINT 3 <value 3>

14. Program the output of the fourth calibration point by sending the following command string from the computer:

    CAL:OUTP:CURR:DAC 45000

15. Let the output settle and measure the output current with the current shunt and the high precision voltmeter; this is value 4.

16. Enter the actual output current of the fourth calibration point:

    CAL:OUTP:CURR:FIVEPOINT 4 <value 4>

17. Program the output of the fifth calibration point by sending the following command string from the computer:

    CAL:OUTP:CURR:DAC 62250
18. Let the output settle and measure the output current with the current shunt and the high precision voltmeter; this is value 5.

19. Enter the actual output current of the fifth calibration point:

   `CAL:OUTP:CURR:FIVEPOINT 5 <value 5>`

20. To review entered data for five–point current calibration, issue the following query:

   `CAL:OUTP:CURR:FIVEPOINT?`

21. Send the command to calculate the calibration coefficients by the processor.

   `CAL:OUTP:CURR:CALC`

22. Program the supply to unlock the non-volatile memory for calibration value storage:

   `CAL:UNLOCK “6867”`

23. Program the supply to store the calibration values in non-volatile memory:

   `CAL:STORE`

   *Allow 15 seconds for the non-volatile memory to be updated with the new calibration values.*

24. Program the supply to lock the non-volatile memory for calibration value protection:

   `CAL:LOCK`

10.6 **ANALOG PROGRAM ADJUSTMENT**

Analog programming ports can be calibrated with set of commands as described in below section. For detailed Pin description of the Analog programming connector and connection diagram, Refer Section 7.2

**Preparation:**

1. Power down the Unit Under Test (UUT) and remove the input power for safety.
2. Allow 5 minutes for the energy in the output to bleed down to a safe level.
3. Locate the Analog Programming connector at the rear end of the power supply.
4. Connect a DC voltage source to PIN numbers required for the Calibration procedure that is to be performed, OR connect Resistor as a load for 1mA constant current source if the selected calibration procedure is on Resistance programming.
10.6.1 Voltage programming – 10V range voltage source calibration

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect zero volt (0 +/- 0.003V) across PIN 4 and PIN 18 of Analog Programming connector.</td>
</tr>
<tr>
<td>4.</td>
<td>Select the Analog programming source as Voltage source and 10V range. Also select programming mode as internal during calibration procedure. SOUR:ANALOG:PROG:SOUR VOLT SOUR:VOLT:PROG INT SOUR:VOLT:PROG:FSC 10</td>
</tr>
<tr>
<td>5.</td>
<td>Calibrate the Offset point. CAL:OUTP:VOLT:EXTV:OFFS 0</td>
</tr>
<tr>
<td>6.</td>
<td>Set the DC voltage at PIN4 to 10V +/-0.003V. Calibrate the full scale point. CAL:OUTP:VOLT:EXTV:FSC &lt;UUT’s Full-scale volt&gt;</td>
</tr>
<tr>
<td>7.</td>
<td>Unlock and store the Calibration. CAL:UNLOCK “6867” CAL:STORE CAL:LOCK</td>
</tr>
</tbody>
</table>

10.6.2 Voltage programming – 5V range voltage source calibration

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect zero volt (0 +/- 0.003V) across PIN 4 and PIN 18 of Analog Programming connector.</td>
</tr>
<tr>
<td>4.</td>
<td>Select the Analog programming source as Voltage source and 5V range. Also select programming mode as internal during calibration procedure.</td>
</tr>
</tbody>
</table>
SCPI Status Implementation

10.6.3 Voltage programming – current source (Resistance Programming) calibration

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect zero ohm across PIN 3 and PIN 18 of Analog Programming connector.</td>
</tr>
<tr>
<td>4.</td>
<td>Select the Analog programming source as Current source. Also select programming mode as internal during calibration procedure.</td>
</tr>
<tr>
<td>5.</td>
<td>Calibrate the Offset point.</td>
</tr>
<tr>
<td>6.</td>
<td>Connect 5k Ohm across PIN 3 and PIN 18 of Analog Programming Connector. Calibrate the full scale point.</td>
</tr>
<tr>
<td>7.</td>
<td>Unlock and store the Calibration.</td>
</tr>
</tbody>
</table>
10.6.4 Voltage programming – 4-20mA source calibration

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect 4mA source OR 2VDC across PIN 4 and PIN 18 of Analog Programming connector.</td>
</tr>
</tbody>
</table>
| 4.   | Select the Analog programming source as 4-20mA source. Also select programming mode as internal during calibration procedure.  
SOUR:ANALOG:PROG:SOUR MA420  
SOUR:VOLT:PROG INT |
| 5.   | Calibrate the Offset point.  
CAL:OUTP:VOLT:EXT420MA:OFFS 0 |
| 6.   | Connect 20mA source OR 10VDC across PIN 4 and PIN 18 of Analog Programming Connector. Calibrate the full scale point.  
CAL:OUTP:VOLT:EXT420MA:FSC <UUT’s Full-scale volt> |
| 7.   | Unlock and store the Calibration.  
CAL:UNLOCK “6867”  
CAL:STORE  
CAL:LOCK |

10.6.5 Current programming – 10V range voltage source calibration

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect zero volt (0 +/- 0.003V) across PIN 19 and PIN 18 of Analog Programming connector.</td>
</tr>
</tbody>
</table>
| 4.   | Select the Analog programming source as Voltage source and 10V range. Also select programming mode as internal during calibration procedure.  
SOUR:ANALOG:PROG:SOUR VOLT  
SOUR:CURR:PROG INT  
SOUR:CURR:PROG:FSC 10 |
5. Calibrate the Offset point.
   
   \texttt{CAL:OUTP:CURR:EXTV:OFFS 0}

6. Set the DC voltage at PIN 19 to 10V +/-0.003V. Calibrate the full scale point.

   \texttt{CAL:OUTP:CURR:EXTV:FSC \textless UUT’s Full-scale volt>}

7. Unlock and store the Calibration.

   \texttt{CAL:UNLOCK “6867”}
   \texttt{CAL:STORE}
   \texttt{CAL:LOCK}

\subsection*{10.6.6 Current programming – 5V range voltage source calibration}

\begin{tabular}{ll}
\textbf{STEP} & \textbf{DESCRIPTION} \\
1. & Issue a *CLS command. \\
2. & Issue a *RST command. \\
3. & Connect zero volt (0 +/- 0.003V) across PIN 19 and PIN 18 of Analog Programming connector.
   
   & \texttt{SOUR:ANALOG:PROG:SOUR VOLT} \\
   & \texttt{SOUR:CURR:PROG INT} \\
   & \texttt{SOUR:CURR:PROG:FSC 5} \\
4. & Select the Analog programming source as Voltage source and 5V range. Also select programming mode as internal during calibration procedure.
   
   & \texttt{SOUR:ANALOG:PROG:SOUR VOLT} \\
   & \texttt{SOUR:CURR:PROG INT} \\
   & \texttt{SOUR:CURR:PROG:FSC 5} \\
5. & Calibrate the Offset point.
   
   & \texttt{CAL:OUTP:CURR:EXTV:OFFS 0} \\
6. & Set the DC voltage at PIN 19 to 5V +/-0.003V. Calibrate the full scale point.
   
   & \texttt{CAL:OUTP:CURR:EXTV:FSC \textless UUT’s Full-scale volt>} \\
7. & Unlock and store the Calibration.
   
   & \texttt{CAL:UNLOCK “6867”} \\
   & \texttt{CAL:STORE} \\
   & \texttt{CAL:LOCK}
\end{tabular}
10.6.7 **Current programming – current source (Resistance Programming) calibration**

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect zero ohm across PIN 20 and PIN 18 of Analog Programming connector.</td>
</tr>
</tbody>
</table>
| 4.   | Select the Analog programming source as Current source. Also select programming mode as internal during calibration procedure.  
    SOUR:ANALOG:PROG:SOUR CURR  
    SOUR:CURR:PROG INT |
| 5.   | Calibrate the Offset point.  
    CAL:OUTP:CURR:EXTI:OFFS 0 |
| 6.   | Connect 5k Ohm across PIN 20 and PIN 18 of Analog Programming Connector. Calibrate the full scale point.  
    CAL:OUTP:CURR:EXTI:FSC <UUT’s Full-scale volt> |
| 7.   | Unlock and store the Calibration.  
    CAL:UNLOCK “6867”  
    CAL:STORE  
    CAL:LOCK |

10.6.8 **Current programming – 4-20mA source calibration**

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect 4mA source OR 2VDC across PIN 19 and PIN 18 of Analog Programming connector.</td>
</tr>
</tbody>
</table>
| 4.   | Select the Analog programming source as 4-20mA source. Also select programming mode as internal during calibration procedure.  
    SOUR:ANALOG:PROG:SOUR MA420  
    SOUR:CURR:PROG INT |
5. Calibrate the Offset point.
   
   \texttt{CAL:OUTP:CURR:EXT420MA:OFFS 0}

6. Connect 20mA source OR 10VDC across PIN 19 and PIN 18 of Analog Programming Connector. Calibrate the full scale point.
   
   \texttt{CAL:OUTP:CURR:EXT420MA:FSC <UUT’s Full-scale volt>}

7. Unlock and store the Calibration.
   
   \texttt{CAL:UNLOCK “6867”}
   \texttt{CAL:STORE}
   \texttt{CAL:LOCK}

10.6.9 **Power programming – 10V range voltage source calibration**

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect zero volt (0 +/- 0.003V) across PIN 33 and PIN 18 of Analog Programming connector.</td>
</tr>
<tr>
<td>4.</td>
<td>Select the Analog programming source as Voltage source and 10V range. Also select programming mode as internal during calibration procedure.</td>
</tr>
<tr>
<td>5.</td>
<td>Calibrate the Offset point.</td>
</tr>
<tr>
<td>6.</td>
<td>Set the DC voltage at PIN 33 to 10V +/-0.003V. Calibrate the full scale point.</td>
</tr>
<tr>
<td>7.</td>
<td>Unlock and store the Calibration.</td>
</tr>
</tbody>
</table>
10.6.10 POWER programming – 5V range voltage source calibration

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect zero volt (0 +/- 0.003V) across PIN 33 and PIN 18 of Analog Programming connector.</td>
</tr>
<tr>
<td>4.</td>
<td>Select the Analog programming source as Voltage source and 5V range. Also select programming mode as internal during calibration procedure. SOUR:ANALOG:PROG:SOUR VOLT SOUR:POW:PROG INT SOUR:POW:PROG:FSC 5</td>
</tr>
<tr>
<td>5.</td>
<td>Calibrate the Offset point. CAL:OUTP:POW:EXTV:OFFS 0</td>
</tr>
<tr>
<td>6.</td>
<td>Set the DC voltage at PIN 33 to 5V +/-0.003V. Calibrate the full scale point. CAL:OUTP:POW:EXTV:FSC &lt;UUT's Full-scale volt&gt;</td>
</tr>
<tr>
<td>7.</td>
<td>Unlock and store the Calibration. CAL:UNLOCK “6867” CAL:STORE CAL:LOCK</td>
</tr>
</tbody>
</table>

10.6.11 POWER programming – current source (Resistance Programming) calibration

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect zero ohm across PIN 34 and PIN 18 of Analog Programming connector.</td>
</tr>
<tr>
<td>4.</td>
<td>Select the Analog programming source as Current source. Also select programming mode as internal during calibration procedure. SOUR:ANALOG:PROG:SOUR CURR SOUR:POW:PROG INT</td>
</tr>
</tbody>
</table>
5. Calibrate the Offset point.
   \[\text{CAL:OUTP:POW:EXTI:OFFS 0}\]

6. Connect 5k Ohm across PIN 34 and PIN 18 of Analog Programming Connector. Calibrate the full scale point.
   \[\text{CAL:OUTP:POW:EXTI:FSC <UUT’s Full-scale volt>}\]

7. Unlock and store the Calibration.
   \[\text{CAL:UNLOCK “6867”}\]
   \[\text{CAL:STORE}\]
   \[\text{CAL:LOCK}\]

### 10.6.12 POWER programming – 4-20mA source calibration

**STEP**  **DESCRIPTION**

1. Issue a *CLS command.

2. Issue a *RST command.

3. Connect 4mA source OR 2VDC across PIN 33 and PIN 18 of Analog Programming connector.

4. Select the Analog programming source as 4-20mA source. Also select programming mode as internal during calibration procedure.
   \[\text{SOUR:ANALOG:PROG:SOUR MA420}\]
   \[\text{SOUR:POW:PROG INT}\]

5. Calibrate the Offset point.
   \[\text{CAL:OUTP:POW:EXT420MA:OFFS 0}\]

6. Connect 20mA source OR 10VDC across PIN 33 and PIN 18 of Analog Programming Connector. Calibrate the full-scale point.
   \[\text{CAL:OUTP:POW:EXT420MA:FSC <UUT’s Full-scale volt>}\]

7. Unlock and store the Calibration.
   \[\text{CAL:UNLOCK “6867”}\]
   \[\text{CAL:STORE}\]
   \[\text{CAL:LOCK}\]
10.6.13 OVER-Voltage programming – 10V range calibration

**STEP**  **DESCRIPTION**

1. Issue a *CLS command.

2. Issue a *RST command.

3. Connect zero volt (0 +/- 0.003V) across PIN 5 and PIN 18 of Analog Programming connector.

4. Select the over-voltage Analog programming range as 10V. Also select programming mode as internal during calibration procedure.

   ```
   SOUR:VOLT:PROT:PROG INT
   SOUR:VOLT:PROT:PROG:FSC 10
   SOUR:ANALOG:PROG:SOUR VOLT
   ```

5. Calibrate the Offset point.

   ```
   CAL:OUTP:OVERVOLT:EXTV:OFFS 0
   ```

6. Set the DC voltage at PIN 5 to 10V +/-0.003V. Calibrate the full scale point.

   ```
   CAL:OUTP:OVERVOLT:EXTV:FSC <UUT’s Full-scale volt>
   ```

7. Unlock and store the Calibration.

   ```
   CAL:UNLOCK “6867”
   CAL:STORE
   CAL:LOCK
   ```

10.6.14 OVER-Voltage programming – 5V range calibration

**STEP**  **DESCRIPTION**

1. Issue a *CLS command.

2. Issue a *RST command.

3. Connect zero volt (0 +/- 0.003V) across PIN 5 and PIN 18 of Analog Programming connector.

4. Select the over-voltage Analog programming range as 5V. Also select programming mode as internal during calibration procedure.

   ```
   SOUR:VOLT:PROT:PROG INT
   SOUR:VOLT:PROT:PROG:FSC 5
   ```

5. Calibrate the Offset point.
CAL:OUTP:OVERVOLT:EXTV:OFFS 0

6. Set the DC voltage at PIN 5 to 5V +/-0.003V. Calibrate the full scale point.

CAL:OUTP:OVERVOLT:EXTV:FSC <UUT’s Full-scale volt>

7. Unlock and store the Calibration.

CAL:UNLOCK “6867”
CAL:STORE
CAL:LOCK

10.7 REMOTE MONITOR OUTPUTS CALIBRATION

Remote Monitor output signals can be calibrated with set of commands as described in below section. For detailed Pin description of the Remote Monitor Outputs and connection diagram, Refer Section 8.4

10.7.1 Voltage Monitor Output Calibration

**STEP**  **DESCRIPTION**

1. Issue a *CLS command.

2. Issue a *RST command.

3. Connect the DMM at PIN 6 and PIN 22 to measure voltage monitor pin voltage. Set the load for approximately 25% of rated output current. Type the following commands.

   SOUR:VOLT 0
   SOUR:CURR <UUT’s Full-scale current>
   OUTP:STAT 1
   CAL:INIT:VOLT:MON

4. Calibrate the Offset point.

   CAL:OUTP:VOLT:MON:OFFS <voltage at PIN6 read from DMM>

5. Set the output voltage to 80% of UUT’s Full-scale rated voltage.

   SOUR:VOLT <0.8 times UUT’s Full-scale voltage>
   CAL:OUTP:VOLT:MON:FSC <voltage at PIN6 read from DMM>

6. Unlock and store the Calibration.

   CAL:UNLOCK “6867”
   CAL:STORE
10.7.2 Current Monitor Output Calibration

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect the DMM at PIN 21 and PIN 22 to measure current monitor pin voltage. Connect a short across the output. Type the following commands.</td>
</tr>
<tr>
<td></td>
<td>SOUR:VOLT &lt;UUT’s Full-scale voltage&gt;</td>
</tr>
<tr>
<td></td>
<td>SOUR:CURR 0</td>
</tr>
<tr>
<td></td>
<td>OUTP:STAT 1</td>
</tr>
<tr>
<td></td>
<td>CAL:INIT:CURR:MON</td>
</tr>
</tbody>
</table>

| 4.   | Calibrate the Offset point. |
|     | CAL:OUTP:CURR:MON:OFFS <voltage at PIN21 read from DMM> |

| 5.   | Set the output current to 80% of UUT’s Full-scale rated current. |
|     | SOUR:CURR <0.8 times UUT’s Full-scale current> |
|     | CAL:OUTP:CURR:MON:FSC <voltage at PIN21 read from DMM> |

| 6.   | Unlock and store the Calibration. |
|     | CAL:UNLOCK “6867” |
|     | CAL:STORE |
|     | CAL:LOCK |

10.7.3 Power Monitor Output Calibration

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Issue a *CLS command.</td>
</tr>
<tr>
<td>2.</td>
<td>Issue a *RST command.</td>
</tr>
<tr>
<td>3.</td>
<td>Connect the DMM at PIN 35 and PIN 22 to measure voltage monitor pin voltage. Set the output load to 90% of the full scale. Type the following commands.</td>
</tr>
<tr>
<td></td>
<td>SOUR:VOLT &lt;UUT’s Full-scale voltage&gt;</td>
</tr>
<tr>
<td></td>
<td>SOUR:CURR &lt;UUT’s Full-scale current&gt;</td>
</tr>
<tr>
<td></td>
<td>SOUR:POW 0</td>
</tr>
<tr>
<td></td>
<td>OUTP:STAT 1</td>
</tr>
<tr>
<td></td>
<td>CAL:INIT:POW:MON</td>
</tr>
</tbody>
</table>
4. Calibrate the Offset point.
   CAL:OUTP:POW:MON:OFFS <voltage at PIN35 read from DMM>

5. Set the output power to 80% of UUT’s Full-scale rated power.
   SOUR:POW <0.8 times UUT’s Full-scale power>
   CAL:OUTP:POW:MON:FSC <voltage at PIN35 read from DMM>

6. Unlock and store the Calibration.
   CAL:UNLOCK “6867”
   CAL:STORE
   CAL:LOCK
11 SCPI STATUS IMPLEMENTATION

11.1 SCPI STATUS BYTE IMPLEMENTATION
SCPI status byte implementation for the Asterion DC power supply is described in Figure 11-1.
The SESR (Standard Event Service Register). Masking does not prevent events from setting bits in the SESR. This facilitates polling as a means of detecting these events, since the SESR can be polled (read) using the "*ESR?" command, irrespective of the bits set or not set in the Standard Event Status Enable Register.

Fault Events - which must be enabled by the Protection Enable Register before they are recorded in the fault register.

The SESER (Standard Event Status Enable Register). This register is read using the "*ESE?" SCPI query command. This register is written to using the "*ESE <value>" command. A "1" in the appropriate bit location enables that corresponding bit from the SESR to pass through to the input of the OR gate to be included in the SESR summary bit (bit 5) in the SCPI Status Byte.

The SCPI Status Byte. Read using either the "*STB?" command, or the GPIB serial poll operation. Eight bit-wise logical AND operations

The Service Request Enable Register (SRER). Used to enable which Status Byte bits can affect the service request bit. "*SRE?" reads. "*SRE <value>" writes.

The Protection Enable Register. Readable using the STAT:PROT:ENAB? query command. Writable using the STAT:PROT:ENAB <value> command. Used to select what fault events could set a bit in the Fault Register. Certain faults can occur even if they are not enabled. This is because the Protection Enable Register merely filters which events are allowed to affect the Fault Register, not whether those events can occur.

Fault Register (also called the Protection Event Register). Readable using the STAT:PROT:EVEN? Query command. Bit 21 to 31 are not used.

This page intentionally left blank.
INDEX

C
CALibrate, 9-27, 9-28
Calibration
  Setup for Calibration, 10-39
  Voltage Programming Calibration, 10-39
  Warning, 10-38
Calibration Procedures
  Introduction, 10-38
  Voltage Programming, Ethernet, 10-39, 10-42
Calibration Procedures, 10-38
  Analog Program Adjustment, 10-46
  Current Programming, Ethernet, 10-44
  Setup, 10-39
CALIBRATION SCPI Command Reference, 9-29
Configuration
  Ethernet/Lan, 6-6
  RS232 Setup Procedure, 4-3
  Setup Procedure, Ethernet, 6-8
Configuration and Remote Programming
  Ethernet, 6-6, 7-20
Configurations
  IEEE 488.2 GPIB Setup Procedures, 7-21
  Setup Procedure, DHCP, 6-8
Conventions
  [], 9-9

E
Error/Event Queue, 9-7
  SCPI Error Codes, 9-7
Ethernet Interface, 1-2
Examples, Using SCPI Commands, 9-34

OVP Setup, 9-35
Power On INIT, 9-37
Ramp I, 9-36
Ramp V, 2, 9-37
Trigger, 9-36
VI Mode, 9-34
External User Control Signal Connector
  Warning, 8-20

F
Features
  IEEE 488.2 GPIB, 2-2
  Features of Ethernet interface, 2-2
  Features of RS232 interface, 2-1
  Features, Functions and Specifications, 2-1
Functions, 2-3
  Programmable, 2-2
  Readback, 2-3

G
Global Channel 0, 7-21

H
HTRIGGER SCPI Command Reference, 9-26

I
IEEE 488.2 GPIB Configurations and Remote Programming, 5-1
IEEE 488.2 GPIB Interface, 1-2
IEEE-488.2 Common Command Subsystem, 9-10
*CLS, 9-10
*ESE, 9-10
*ESR?, 9-10
*IDN?, 9-10
*OPC, 9-10
*RST, 9-10
*SRE, 9-10
*STB?, 9-11
Interactive Control, 6-17

L
LXI Identification, 6-18

M
MEASURE SCPI Command Reference, 9-20
MEASURE SCPI Command Subsystem, 9-20

N
Network Setup Procedure
DHCP, 6-8

O
Operation
Remote Output On/Off Control, 8-24
Remote Overvoltage Protection Programming, 8-17
Remote Voltage Programming, 8-13, 8-15
OUTPUT SCPI Command Reference, 9-22
OUTPUT SCPI Command Subsystem, 9-21
Overview, 1-1

P
Parameter Definitions, 9-9
boolean, 9-9
NR1, 9-9
NRF, 9-9
string, 9-9
Programming Accuracy
IEEE 488.2 GPIB/RS232/Ethernet, 2-3
Programming Resolution
IEEE 488.2 GPIB/RS232/Ethernet, 2-3
Programming/Communication via Ethernet, 6-12
Raw Socket Interface, 6-12
Web Server, 6-13

Q
Queries, 9-9

R
Ramp Function, 9-19
Ramping
Description, 9-19, 9-26
Readback Accuracy
IEEE 488.2 GPIB/RS232/Ethernet, 2-4
Readback Resolution
IEEE 488.2 GPIB/RS232/Ethernet, 2-4
Rear Panel, 4-1
Ethernet Layout, 6-7
Rear Panel Configuration Switch
Address Selection, GPIB, 5-2, 7-21
Power-On GPIB Service Request (PON SRQ) Selection, 5-3, 7-21
Remote Current Programming
Resistance Control, 8-10
Voltage Source Control, 8-13, 8-16, 8-17
Remote Output On/Off Control, 8-24
Contact Closure Control, 8-24
External Source Control, 8-25
Remote Overvoltage Protection Programming, 8-17
Remote Programming via RS-232, 4-1
Remote Voltage Programming, 8-13, 8-15
Resistance Control, 8-11, 8-12
Voltage Source Control, 8-13, 8-14
Remote/Local Selection, 3-1
RS232 Configurations and Remote Programming, 4-1
RS232 Interface, 1-1, 1-2
RS232/Ethernet/IEEE 488.2 GPIB and SCPI Command Operation, 9-1

S
SCPI Command Operation
CALibrate, 9-27, 9-28
STATus, 9-34
SCPI Commands
Application Examples, 9-34
CALIBRATION, 9-27
HTRIGGER, 9-26
Measure, 9-20
Output, 9-21
Source, 9-11
Status, 9-34
System, 9-23
SCPI Conformance, 9-8
SCPI Conventions, 9-9
SCPI Parameter Definitions, 9-9
SCPI STATUS IMPLEMENTATION, 11-57
SCPI Status Byte, 9-5
Serial Poll Operation, 9-8
Setup Procedure, 6-8
SGX Banner and Tab, 6-13
Shield Ground, GPIB, 7-21
Source SCPI Command Reference, 9-14
Specifications
  IEEE 488.2 GPIB/RS232/Ethernet, 2-3
Specifications, IEEE 288.2 GPIB, RS232 and Ethernet, 2-3
Standard Event Status Register (ESR), 9-4
STATus, 9-34
STATUS SCPI Command Reference, 9-34
STATUS SCPI Command Subsystem, 9-34
System Requirements, Ethernet Minimum, 2-4
SYSTEM SCPI Command Reference, 9-24
SYSTEM SCPI Command Subsystem, 9-23

T
  TRIGGER SCPI Command Reference, 9-26
  TRIGGER SCPI Command Subsystem, 9-26

W
  Web Server
    Configuration page, 6-15
    Home page, 6-14
    Login window, 6-13